Search results for: Pareto optimal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3048

Search results for: Pareto optimal

2778 Optimization of Wear during Dry Sliding Wear of AISI 1042 Steel Using Response Surface Methodology

Authors: Sukant Mehra, Parth Gupta, Varun Arora, Sarvoday Singh, Amit Kohli

Abstract:

The study was emphasised on dry sliding wear behavior of AISI 1042 steel. Dry sliding wear tests were performed using pin-on-disk apparatus under normal loads of 5, 7.5 and 10 kgf and at speeds 600, 750 and 900 rpm. Response surface methodology (RSM) was utilized for finding optimal values of process parameter and experiment was based on rotatable, central composite design (CCD). It was found that the wear followed linear pattern with the load and rpm. The obtained optimal process parameters have been predicted and verified by confirmation experiments.

Keywords: central composite design (CCD), optimization, response surface methodology (RSM), wear

Procedia PDF Downloads 545
2777 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm

Authors: Hossein Abbasi

Abstract:

The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.

Keywords: frequency control, HS algorithm, microgrid, PI controller, voltage control

Procedia PDF Downloads 362
2776 An Optimal Algorithm for Finding (R, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (R, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (R, Q) policy which minimizes the expected system costs .

Keywords: (R, Q) policy, stochastic demand, backorders, limited resource, quantity discounts

Procedia PDF Downloads 616
2775 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: Pushpendra S. Bharti, S. Maheshwari

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization

Procedia PDF Downloads 324
2774 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System

Authors: Nelson K. Lujara

Abstract:

The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.

Keywords: photovoltaic, water pumping, losses, induction motor

Procedia PDF Downloads 272
2773 Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System

Authors: Saeed Poormoaied, Zumbul Atan

Abstract:

Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution.

Keywords: emergency shipment, inventory, periodic review policy, approximation algorithm.

Procedia PDF Downloads 113
2772 Enhancing Throughput for Wireless Multihop Networks

Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis

Abstract:

Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.

Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network

Procedia PDF Downloads 494
2771 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: deadline, dynamic voltage frequency scaling, power state transition

Procedia PDF Downloads 421
2770 Design and Implementation Guidance System of Guided Rocket RKX-200 Using Optimal Guidance Law

Authors: Amalia Sholihati, Bambang Riyanto Trilaksono

Abstract:

As an island nation, is a necessity for the Republic of Indonesia to have a capable military defense on land, sea or air that the development of military weapons such as rockets for air defense becomes very important. RKX rocket-200 is one of the guided missiles which are developed by consortium Indonesia and coordinated by LAPAN that serve to intercept the target. RKX-200 is designed to have the speed of Mach 0.5-0.9. RKX rocket-200 belongs to the category two-stage rocket that control is carried out on the second stage when the rocket has separated from the booster. The requirement for better performance to intercept missiles with higher maneuverability continues to push optimal guidance law development, which is derived from non-linear equations. This research focused on the design and implementation of a guidance system based OGL on the rocket RKX-200 while considering the limitation of rockets such as aerodynamic rocket and actuator. Guided missile control system has three main parts, namely, guidance system, navigation system and autopilot systems. As for other parts such as navigation systems and other supporting simulated on MATLAB based on the results of previous studies. In addition to using the MATLAB simulation also conducted testing with hardware-based ARM TWR-K60D100M conjunction with a navigation system and nonlinear models in MATLAB using Hardware-in-the-Loop Simulation (HILS).

Keywords: RKX-200, guidance system, optimal guidance law, Hils

Procedia PDF Downloads 223
2769 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan Al Salman, Ahmed Al Ghafli

Abstract:

In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.

Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound

Procedia PDF Downloads 495
2768 Application Procedure for Optimized Placement of Buckling Restrained Braces in Reinforced Concrete Building Structures

Authors: S. A. Faizi, S. Yoshitomi

Abstract:

The optimal design procedure of buckling restrained braces (BRBs) in reinforced concrete (RC) building structures can provide the distribution of horizontal stiffness of BRBs at each story, which minimizes story drift response of the structure under the constraint of specified total stiffness of BRBs. In this paper, a simple rule is proposed to convert continuous horizontal stiffness of BRBs into sectional sizes of BRB which are available from standardized section list assuming realistic structural design stage.

Keywords: buckling restrained brace, building engineering, optimal damper placement, structural engineering

Procedia PDF Downloads 293
2767 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)

Procedia PDF Downloads 298
2766 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning

Procedia PDF Downloads 326
2765 Reliable Method for Estimating Rating Curves in the Natural Rivers

Authors: Arash Ahmadi, Amirreza Kavousizadeh, Sanaz Heidarzadeh

Abstract:

Stage-discharge curve is one of the conventional methods for continuous river flow measurement. In this paper, an innovative approach is proposed for predicting the stage-discharge relationship using the application of isovel contours. Using the proposed method, it is possible to estimate the stage-discharge curve in the whole section with only using discharge information from just one arbitrary water level. For this purpose, multivariate relationships are used to determine the mean velocity in a cross-section. The unknown exponents of the proposed relationship have been obtained by using the second version of the Strength Pareto Evolutionary Algorithm (SPEA2), and the appropriate equation was selected by applying the TOPSIS (Technique for Order Preferences by Similarity to an Ideal Solution) approach. Results showed a close agreement between the estimated and observed data in the different cross-sections.

Keywords: rating curves, SPEA2, natural rivers, bed roughness distribution

Procedia PDF Downloads 128
2764 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 618
2763 Design of Chaos Algorithm Based Optimal PID Controller for SVC

Authors: Saeid Jalilzadeh

Abstract:

SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.

Keywords: chaos, PID controller, SVC, frequency oscillation

Procedia PDF Downloads 419
2762 Adapting Grain Crop Cleaning Equipment for Sesame and Other Emerging Spice Crops

Authors: Ramadas Narayanan, Surya Bhattrai, Vu Hoan

Abstract:

Threshing and cleaning are crucial post-harvest procedures that are carried out to separate the grain or seed from the harvested plant and eliminate any potential contaminants or foreign debris. After harvesting, threshing and cleaning are necessary for the clean seeds to guarantee high quality and acceptable for consumption or further processing. For mechanised production, threshing can be conducted in a thresher. Afterwards, the seeds are to be cleaned in dedicated seed-cleaning facilities. This research investigates the effectiveness of Kimseed cleaning equipment MK3, designed for grain crops for processing new crops such as sesame, fennel and kalonji. Subsequently, systematic trials were conducted to adapt the equipment to the applications in sesame and spice crops. It was done to develop methods for mechanising harvest and post-harvest operations. For sesame, it is recommended to have t a two-step process in the cleaning machine to remove large and small contaminants. The first step is to remove the large contaminants, and the second is to remove the smaller ones. The optimal parameters for cleaning fennel are a shaker frequency of 6.0 to 6.5 Hz and an airflow of 1.0 to 1.5 m/s. The optimal parameters for cleaning kalonji are a shaker frequency of 5.5Hz to 6.0 Hz and airflow of 1.0 to under 1.5m/s.

Keywords: sustainable mechanisation, sead cleaning process, optimal setting, shaker frequency

Procedia PDF Downloads 44
2761 Study on a Family of Optimal Fourth-Order Multiple-Root Solver

Authors: Young Hee Geum

Abstract:

In this paper,we develop the complex dynamics of a family of optimal fourth-order multiple-root solvers and plot their basins of attraction. Mobius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicity m are investigated. A 300 x 300 uniform grid centered at the origin covering 3 x 3 square region is chosen to visualize the initial values on each basin of attraction in accordance with a coloring scheme based on their dynamical behavior. The illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence are shown to confirm the theoretical convergence.

Keywords: basin of attraction, conjugacy, fourth-order, multiple-root finder

Procedia PDF Downloads 265
2760 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 51
2759 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 133
2758 The Market Structure Simulation of Heterogenous Firms

Authors: Arunas Burinskas, Manuela Tvaronavičienė

Abstract:

Although the new trade theories, unlike the theories of an industrial organisation, see the structure of the market and competition between enterprises through their heterogeneity according to various parameters, they do not pay any particular attention to the analysis of the market structure and its development. In this article, although we relied mainly on models developed by the scholars of new trade theory, we proposed a different approach. In our simulation model, we model market demand according to normal distribution function, while on the supply side (as it is in the new trade theory models), productivity is modeled with the Pareto distribution function. The results of the simulation show that companies with higher productivity (lower marginal costs) do not pass on all the benefits of such economies to buyers. However, even with higher marginal costs, firms can choose to offer higher value-added goods to stay in the market. In general, the structure of the market is formed quickly enough and depends on the skills available to firms.

Keywords: market, structure, simulation, heterogenous firms

Procedia PDF Downloads 114
2757 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 189
2756 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building

Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo

Abstract:

The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.

Keywords: climate control system, climate physics, dome-like building, mathematical modeling

Procedia PDF Downloads 330
2755 Population Dynamics in Aquatic Environments: Spatial Heterogeneity and Optimal Harvesting

Authors: Sarita Kumari, Ranjit Kumar Upadhyay

Abstract:

This paper deals with plankton-fish dynamics where the fish population is growing logistically and nonlinearly harvested. The interaction between phytoplankton and zooplankton population is considered to be Crowley-Martin type functional response. It has been assumed that phytoplankton grows logistically and is affected by a space-dependent growth rate. Conditions for the existence of a positive equilibrium point and their stability analysis (both local and global) have been discussed for the non-spatial system. We have discussed maximum sustainable yields as well as optimal harvesting policy for maximizing the economic gain. The stability and existence of Hopf –bifurcation analysis have been discussed for the spatial system. Different conditions for turning pattern formation have been established through diffusion-driven instability analysis. Numerical simulations have been carried out for both non-spatial and spatial models. Phase plane analysis, the largest Lyapunov exponent, and bifurcation theory are used to numerically analyzed the non-spatial system. Our study shows that spatial heterogeneity, the mortality rate of phytoplankton, and constant harvesting of the fish population each play an important role in the dynamical behavior of the marine system.

Keywords: optimal harvesting, pattern formation, spatial heterogeneity, Crowley-Martin functional response

Procedia PDF Downloads 135
2754 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 90
2753 Solving Operating Room Scheduling Problem by Using Dispatching Rule

Authors: Yang-Kuei Lin, Yin-Yi Chou

Abstract:

In this research, we have considered operating room scheduling problem. The objective is to minimize total operating cost. The total operating cost includes idle cost and overtime cost. We have proposed a dispatching rule that can guarantee to find feasible solutions for the studied problem efficiently. We compared the proposed dispatching rule with the optimal solutions found by solving Inter Programming, and other solutions found by using modified existing dispatching rules. The computational results indicates that the proposed heuristic can find near optimal solutions efficiently.

Keywords: assignment, dispatching rule, operation rooms, scheduling

Procedia PDF Downloads 207
2752 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 259
2751 A New Approach for Generalized First Derivative of Nonsmooth Functions Using Optimization

Authors: Mohammad Mehdi Mazarei, Ali Asghar Behroozpoor

Abstract:

In this paper, we define an optimization problem corresponding to smooth and nonsmooth functions which its optimal solution is the first derivative of these functions in a domain. For this purpose, a linear programming problem corresponding to optimization problem is obtained. The optimal solution of this linear programming problem is the approximate generalized first derivative. In fact, we approximate generalized first derivative of nonsmooth functions as tailor series. We show the efficiency of our approach by some smooth and nonsmooth functions in some examples.

Keywords: general derivative, linear programming, optimization problem, smooth and nonsmooth functions

Procedia PDF Downloads 524
2750 A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, multi-objective optimization

Procedia PDF Downloads 333
2749 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption

Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko

Abstract:

Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.

Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.

Procedia PDF Downloads 85