Search results for: MATLAB
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 879

Search results for: MATLAB

579 Task Space Synchronization Control of Multi-Robot Arms with Position Synchronous Method

Authors: Zijian Zhang, Yangyang Dong

Abstract:

Synchronization is of great importance to ensure the multi-arm robot to complete the task. Therefore, a synchronous controller is designed to coordinate task space motion of the multi-arm in the paper. The position error, the synchronous position error, and the coupling position error are all considered in the controller. Besides, an adaptive control method is used to adjust parameters of the controller to improve the effectiveness of coordinated control performance. Simulation in the Matlab shows the effectiveness of the method. At last, a robot experiment platform with two 7-DOF (Degree of Freedom) robot arms has been established and the synchronous controller simplified to control dual-arm robot has been validated on the experimental set-up. Experiment results show the position error decreased 10% and the corresponding frequency is also greatly improved.

Keywords: synchronous control, space robot, task space control, multi-arm robot

Procedia PDF Downloads 131
578 Control of Hybrid System Using Fuzzy Logic

Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi

Abstract:

This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.

Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control

Procedia PDF Downloads 519
577 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 122
576 Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier

Authors: Kittipong Tripetch

Abstract:

This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumption

Keywords: grounded active inductor, floating active inductor, fully differential bandpass amplifier

Procedia PDF Downloads 396
575 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador

Procedia PDF Downloads 211
574 An Efficient Book Keeping Strategy for the Formation of the Design Matrix in Geodetic Network Adjustment

Authors: O. G. Omogunloye, J. B. Olaleye, O. E. Abiodun, J. O. Odumosu, O. G. Ajayi

Abstract:

The focus of the study is to proffer easy formulation and computation of least square observation equation’s design matrix by using an efficient book keeping strategy. Usually, for a large network of many triangles and stations, a rigorous task is involved in the computation and placement of the values of the differentials of each observation with respect to its station coordinates (latitude and longitude), in their respective rows and columns. The efficient book keeping strategy seeks to eliminate or reduce this rigorous task involved, especially in large network, by simple skillful arrangement and development of a short program written in the Matlab environment, the formulation and computation of least square observation equation’s design matrix can be easily achieved.

Keywords: design, differential, geodetic, matrix, network, station

Procedia PDF Downloads 313
573 Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC

Authors: Misbahuddin Mahammad, P. Chandra Sekhar, Metuku Shyamsunder

Abstract:

The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient.

Keywords: sigma delta modulator, CIC filter, decimation filter, compensation filter, noise shaping

Procedia PDF Downloads 432
572 A Novel Method for Silence Removal in Sounds Produced by Percussive Instruments

Authors: B. Kishore Kumar, Rakesh Pogula, T. Kishore Kumar

Abstract:

The steepness of an audio signal which is produced by the musical instruments, specifically percussive instruments is the perception of how high tone or low tone which can be considered as a frequency closely related to the fundamental frequency. This paper presents a novel method for silence removal and segmentation of music signals produced by the percussive instruments and the performance of proposed method is studied with the help of MATLAB simulations. This method is based on two simple features, namely the signal energy and the spectral centroid. As long as the feature sequences are extracted, a simple thresholding criterion is applied in order to remove the silence areas in the sound signal. The simulations were carried on various instruments like drum, flute and guitar and results of the proposed method were analyzed.

Keywords: percussive instruments, spectral energy, spectral centroid, silence removal

Procedia PDF Downloads 371
571 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic voltage restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using MATLAB software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, power quality, voltage sags, voltage swells, flicker

Procedia PDF Downloads 314
570 Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions

Authors: Kusum Tharani, Ratna Dahiya

Abstract:

This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model.

Keywords: grid connected PV Array, Newton-Raphson Method, power flow analysis, three phase fault

Procedia PDF Downloads 526
569 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms

Authors: Saeid Jalilzadeh

Abstract:

PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.

Keywords: controller, GA, optimization, PID, PSO

Procedia PDF Downloads 513
568 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker

Authors: Aysan Esgandanian, Sabalan Daneshvar

Abstract:

The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.

Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller

Procedia PDF Downloads 433
567 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic

Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani

Abstract:

Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.

Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter

Procedia PDF Downloads 337
566 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 558
565 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad

Abstract:

Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.

Keywords: CSTR, temperature, PID, fuzzy logic

Procedia PDF Downloads 418
564 Application of the DTC Control in the Photovoltaic Pumping System

Authors: M. N. Amrani, H. Abanou, A. Dib

Abstract:

In this paper, we proposed a strategy for optimizing the performance for a pumping structure constituted by an induction motor coupled to a centrifugal pump and improving existing results in this context. The considered system is supplied by a photovoltaic generator (GPV) through two static converters piloted in an independent manner. We opted for a maximum power point tracking (MPPT) control method based on the Neuro - Fuzzy, which is well known for its stability and robustness. To improve the induction motor performance, we use the concept of Direct Torque Control (DTC) and PID controller for motor speed to pilot the working of the induction motor. Simulations of the proposed approach give interesting results compared to the existing control strategies in this field. The model of the proposed system is simulated by MATLAB/Simulink.

Keywords: solar energy, pumping photovoltaic system, maximum power point tracking, direct torque Control (DTC), PID regulator

Procedia PDF Downloads 512
563 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 387
562 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 295
561 Photovoltaic Water Pumping System Application

Authors: Sarah Abdourraziq

Abstract:

Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.

Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system

Procedia PDF Downloads 370
560 Heat Transfer Augmentation in Solar Air Heater Using Fins and Twisted Tape Inserts

Authors: Rajesh Kumar, Prabha Chand

Abstract:

Fins and twisted tape inserts are widely used passive elements to enhance heat transfer rate in various engineering applications. The present paper describes the theoretical analysis of solar air heater fitted with fins and twisted tape inserts. Mathematical model is develop for this novel design of solar air heater and a MATLAB code is generated for the solution of the model. The effect of twist ratio, mass flow rate and inlet temperature on the thermal efficiency and exit air temperature has been investigated. The results are compared with the results of plane solar air heater. Results show a substantial enhancement in heat transfer rate, efficiency and exit air temperature.

Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio

Procedia PDF Downloads 221
559 Mathematical Modelling of the Effect of Glucose on Pancreatic Alpha-Cell Activity

Authors: Karen K. Perez-Ramirez, Genevieve Dupont, Virginia Gonzalez-Velez

Abstract:

Pancreatic alpha-cells participate on glucose regulation together with beta cells. They release glucagon hormone when glucose level is low to stimulate gluconeogenesis from the liver. As other excitable cells, alpha cells generate Ca2+ and metabolic oscillations when they are stimulated. It is known that the glucose level can trigger or silence this activity although it is not clear how this occurs in normal and diabetic people. In this work, we propose an electric-metabolic mathematical model implemented in Matlab to study the effect of different glucose levels on the electrical response and Ca2+ oscillations of an alpha cell. Our results show that Ca2+ oscillations appear in opposite phase with metabolic oscillations in a window of glucose values. The model also predicts a direct relationship between the level of glucose and the intracellular adenine nucleotides showing a self-regulating pathway for the alpha cell.

Keywords: Ca2+ oscillations, mathematical model, metabolic oscillations, pancreatic alpha cell

Procedia PDF Downloads 146
558 Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks

Authors: Tugce Talay, Kadir Erkan

Abstract:

In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque.

Keywords: AFPM, ANSYS Maxwell, cogging torque, design optimisation, efficiency, NNTOOL

Procedia PDF Downloads 185
557 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography

Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya

Abstract:

In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.

Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography

Procedia PDF Downloads 259
556 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation

Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly

Abstract:

A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.

Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)

Procedia PDF Downloads 137
555 Study of a Photovoltaic System Using MPPT Buck-Boost Converter

Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni

Abstract:

The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.

Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump

Procedia PDF Downloads 348
554 Design and Burnback Analysis of Three Dimensional Modified Star Grain

Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed

Abstract:

The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.

Keywords: burnback analysis, rocket motor, star grain, three dimensional grains

Procedia PDF Downloads 204
553 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 116
552 Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm

Authors: Engy Adel Mohamed, Yasser Gamal-Eldin Hegazy

Abstract:

This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.

Keywords: distributed generators, firefly algorithm, IEEE 37-node feeder, profit maximization

Procedia PDF Downloads 407
551 Comparison Between PID and PD Controllers for 4 Cable-Based Robots

Authors: Fouad Inel, Lakhdar Khochemane

Abstract:

This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: the first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-IntegratedDerivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.

Keywords: dynamic modeling, geometric modeling, graphical user interface, open loop, parallel cable-based robots, PID/PD controllers

Procedia PDF Downloads 396
550 A Numerical Computational Method of MRI Static Magnetic Field for an Ergonomic Facility Design Guidelines

Authors: Sherine Farrag

Abstract:

Magnetic resonance imaging (MRI) presents safety hazards, with the general physical environment. The principal hazard of the MRI is the presence of static magnetic fields. Proper architectural design of MRI’s room ensure environment and health care staff safety. This research paper presents an easy approach for numerical computation of fringe static magnetic fields. Iso-gauss line of different MR intensities (0.3, 0.5, 1, 1.5 Tesla) was mapped and a polynomial function of the 7th degree was generated and tested. Matlab script was successfully applied for MRI SMF mapping. This method can be valid for any kind of commercial scanner because it requires only the knowledge of the MR scanner room map with iso-gauss lines. Results help to develop guidelines to guide healthcare architects to design of a safer Magnetic resonance imaging suite.

Keywords: designing MRI suite, MRI safety, radiology occupational exposure, static magnetic fields

Procedia PDF Downloads 460