Search results for: M. Frost
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 48

Search results for: M. Frost

18 Machine That Provides Mineral Fertilizer Equal to the Soil on the Slopes

Authors: Huseyn Nuraddin Qurbanov

Abstract:

The reliable food supply of the population of the republic is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on the slopes, the application of equal amounts of mineral fertilizers the under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that, at present, there is a need to provide an equal amount of fertilizer on the slopes to under the soil, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize the under the soil, and unequal application of fertilizers under the soil on the slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, and taking into account the physical and mechanical properties of fertilizers is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the 8 partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.

Keywords: combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer

Procedia PDF Downloads 112
17 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses

Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar

Abstract:

Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.

Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers

Procedia PDF Downloads 62
16 Re-Examining the Distinction between Odour Nuisance and Health Impact: A Community’s Campaign against Landfill Gas Exposure in Shongweni, South Africa

Authors: Colin David La Grange, Lisa Frost Ramsay

Abstract:

Hydrogen sulphide (H2S) is a minor component of landfill gas, but significant in its distinct odorous quality and its association with landfill-related community complaints. The World Health Organisation (WHO) provides two guidelines for H2S: a health guideline at 150 µg/m3 on a 24-hour average, and a nuisance guideline at 7 µg/m3 on a 30-minute average. Albeit a practical distinction for impact assessment, this paper highlights the danger of the apparent dualism between nuisance and health impact, particularly when it is used to dismiss community concerns of perceived health impacts at low concentrations of H2S, as in the case of a community battle against the impacts of a landfill in Shongweni, KwaZulu-Natal, South Africa. Here community members reported, using a community developed mobile phone application, a range of health symptoms that coincided with, or occurred subsequent to, odour events and localised H2S peaks. Local doctors also documented increased visits for symptoms of respiratory distress, eye and skin irritation, and stress after such odour events. Objectively measured H2S and other pollutant concentrations during these events, however, remained below WHO health guidelines. This case study highlights the importance of the physiological link between the experience of environmental nuisance and overall health and wellbeing, showing these to be less distinct than the WHO guidelines would suggest. The potential mechanisms of impact of an odorous plume, with key constituents at concentrations below traditional health thresholds, on psychologically and/or physiologically sensitised individuals are described. In the case of psychological sensitisation, previously documented mechanisms such as aversive conditioning and odour-triggered panic are relevant. Physiological sensitisation to environmental pollutants, evident as a seemingly disproportionate physical (allergy-type) response to either low concentrations or a short duration exposure of a toxin or toxins, remains extensively examined but still not well understood. The links between a heightened sensitivity to toxic compounds, accumulation of some compounds in the body, and a pre-existing or associated immunological stress disorder are presented as a possible explanation.

Keywords: immunological stress disorder, landfill odour, odour nuisance, odour sensitisation, toxin accumulation

Procedia PDF Downloads 97
15 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 337
14 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 45
13 Strawberry Productivity of Peri-Urban and Urban Locations across Southeast Michigan, USA

Authors: Maria E. Laconi, Kyla D. Scherr, Mary A. Jamieson

Abstract:

Human populations in urban environments have rapidly grown in recent decades. Consequently, the intensity of land-use and development has also increased in many urban and peri-urban environments. Some cities, such as Detroit, Michigan, USA, have embraced urban agriculture and local food production. Little is known, however, about how the local and landscape scale environmental factors influence crop productivity on urban farms. Our study aims to evaluate factors influencing the productivity of strawberries on community farms and gardens in the Detroit metropolitan area. Strawberries are one of few fruits that can provide an abundant harvest just after the first season of being planted, which is ideal for urban gardeners in developed areas. In the spring of 2016, we planted six different strawberry cultivars (three everbearing and three June bearing varieties) at five farm sites in Wayne and Oakland County (six replicate plants per cultivar per site). We surveyed flower and fruit phenology and production for everbearing varieties weekly (flowers for June bearing varieties were removed to enhance productivity in the coming growing season). Additionally, we conducted one initial 36hr pollinator survey in mid-September during peak fruit production and characterized local and landscape scale land-cover data. Preliminary results and observations from this first year of our study revealed that strawberry production varied significantly by site. Specifically, productivity at our most northern site appeared to suffer from delayed phenology and early frost damage to ripening strawberries. Bee abundance and diversity also differed among farms, though further surveys are needed to adequately inventory the pollinator community. Finally, strawberry cultivars demonstrated significant differences in the number and size of fruits produced. We plan to continue this study in the coming years, increasing the number of sites surveyed and number of pollinator sampling events. Our study aims to inform strategies for enhancing crop productivity on urban and peri-urban farms.

Keywords: insect pollination, strawberry productivity, sustainable agriculture, urban gardening

Procedia PDF Downloads 246
12 Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard

Authors: Oskar Sekowski

Abstract:

Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties.

Keywords: climatologic potential, climatic classification, Poland, viticulture

Procedia PDF Downloads 77
11 Structural Health Assessment of a Masonry Bridge Using Wireless

Authors: Nalluri Lakshmi Ramu, C. Venkat Nihit, Narayana Kumar, Dillep

Abstract:

Masonry bridges are the iconic heritage transportation infrastructure throughout the world. Continuous increase in traffic loads and speed have kept engineers in dilemma about their structural performance and capacity. Henceforth, research community has an urgent need to propose an effective methodology and validate on real-time bridges. The presented research aims to assess the structural health of an Eighty-year-old masonry railway bridge in India using wireless accelerometer sensors. The bridge consists of 44 spans with length of 24.2 m each and individual pier is 13 m tall laid on well foundation. To calculate the dynamic characteristic properties of the bridge, ambient vibrations were recorded from the moving traffic at various speeds and the same are compared with the developed three-dimensional numerical model using finite element-based software. The conclusions about the weaker or deteriorated piers are drawn from the comparison of frequencies obtained from the experimental tests conducted on alternative spans. Masonry is a heterogeneous anisotropic material made up of incoherent materials (such as bricks, stones, and blocks). It is most likely the earliest largely used construction material. Masonry bridges, which were typically constructed of brick and stone, are still a key feature of the world's highway and railway networks. There are 1,47,523 railway bridges across India and about 15% of these bridges are built by masonry, which are around 80 to 100 year old. The cultural significance of masonry bridges cannot be overstated. These bridges are considered to be complicated due to the presence of arches, spandrel walls, piers, foundations, and soils. Due to traffic loads and vibrations, wind, rain, frost attack, high/low temperature cycles, moisture, earthquakes, river overflows, floods, scour, and soil under their foundations may cause material deterioration, opening of joints and ring separation in arch barrels, cracks in piers, loss of brick-stones and mortar joints, distortion of the arch profile. Few NDT tests like Flat jack Tests are being employed to access the homogeneity, durability of masonry structure, however there are many drawbacks because of the test. A modern approach of structural health assessment of masonry structures by vibration analysis, frequencies and stiffness properties is being explored in this paper.

Keywords: masonry bridges, condition assessment, wireless sensors, numerical analysis modal frequencies

Procedia PDF Downloads 139
10 Investigating the Feasibility of Berry Production in Central Oregon under Protected and Unprotected Culture

Authors: Clare S. Sullivan

Abstract:

The high desert of central Oregon, USA is a challenging growing environment: short growing season (70-100 days); average annual precipitation of 280 mm; drastic swings in diurnal temperatures; possibility of frost any time of year; and sandy soils low in organic matter. Despite strong demand, there is almost no fruit grown in central Oregon due to potential yield loss caused by early and late frosts. Elsewhere in the USA, protected culture (i.e., high tunnels) has been used to extend fruit production seasons and improve yields. In central Oregon, high tunnels are used to grow multiple high-value vegetable crops, and farmers are unlikely to plant a perennial crop in a high tunnel unless proven profitable. In May 2019, two berry trials were established on a farm in Alfalfa, OR, to evaluate raspberry and strawberry yield, season length, and fruit quality in protected (high tunnels) vs. unprotected culture (open field). The main objective was to determine whether high tunnel berry production is a viable enterprise for the region. Each trial was arranged using a split-plot design. The main factor was the production system (high tunnel vs. open field), and the replicated, subplot factor was berry variety. Four day-neutral strawberry varieties and four primocane-bearing raspberry varieties were planted for the study and were managed using organic practices. Berries were harvested once a week early in the season, and twice a week as production increased. Harvested berries were separated into ‘marketable’ and ‘unmarketable’ in order to calculate percent cull. First-year results revealed berry yield and quality differences between varieties and production systems. Strawberry marketable yield and berry fruit size increased significantly in the high tunnel compared to the field; percent yield increase ranged from 7-46% by variety. Evie 2 was the highest yielding strawberry, although berry quality was lower than other berries. Raspberry marketable yield and berry fruit size tended to increase in the high tunnel compared to the field, although variety had a more significant effect. Joan J was the highest yielding raspberry and out-yielded the other varieties by 250% outdoor and 350% indoor. Overall, strawberry and raspberry yields tended to improve in high tunnels as compared to the field, but data from a second year will help determine whether high tunnel investment is worthwhile. It is expected that the production system will have more of an effect on berry yield and season length for second-year plants in 2020.

Keywords: berries, high tunnel, local food, organic

Procedia PDF Downloads 80
9 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: air distribution, CFD, DOE, energy consumption, experimental, larder cabinet, refrigeration, uniform temperature

Procedia PDF Downloads 77
8 A Model for Language Intervention: Toys & Picture-Books as Early Pedagogical Props for the Transmission of Lazuri

Authors: Peri Ozlem Yuksel-Sokmen, Irfan Cagtay

Abstract:

Oral languages are destined to disappear rapidly in the absence of interventions aimed at encouraging their usage by young children. The seminal language preservation model proposed by Fishman (1991) stresses the importance of multiple generations using the endangered L1 while engaged in daily routines with younger children. Over the last two decades Fishman (2001) has used his intergenerational transmission model in documenting the revitalization of Basque languages, providing evidence that families are transmitting Euskara as a first language to their children with success. In our study, to motivate usage of Lazuri, we asked caregivers to speak the language while engaged with their toddlers (12 to 48 months) in semi-structured play, and included both parents (N=32) and grandparents (N=30) as play partners. This unnatural prompting to speak only in Lazuri was greeted with reluctance, as 90% of our families indicated that they had stopped using Lazuri with their children. Nevertheless, caregivers followed instructions and produced 67% of their utterances in Lazuri, with another 14% of utterances using a combination of Lazuri and Turkish (Codeswitch). Although children spoke mostly in Turkish (83% of utterances), frequencies of caregiver utterances in Lazuri or Codeswitch predicted the extent to which their children used the minority language in return. This trend suggests that home interventions aimed at encouraging dyads to communicate in a non-preferred, endangered language can effectively increase children’s usage of the language. Alternatively, this result suggests than any use of the minority language on the part of the children will promote its further usage by caregivers. For researchers examining links between play, culture, and child development, structured play has emerged as a critical methodology (e.g., Frost, Wortham, Reifel, 2007, Lilliard et al., 2012; Sutton-Smith, 1986; Gaskins & Miller, 2009), allowing investigation of cultural and individual variation in parenting styles, as well as the role of culture in constraining the affordances of toys. Toy props, as well as picture-books in native languages, can be used as tools in the transmission and preservation of endangered languages by allowing children to explore adult roles through enactment of social routines and conversational patterns modeled by caregivers. Through adult-guided play children not only acquire scripts for culturally significant activities, but also develop skills in expressing themselves in culturally relevant ways that may continue to develop over their lives through community engagement. Further pedagogical tools, such as language games and e-learning, will be discussed in this proposed oral talk.

Keywords: language intervention, pedagogical tools, endangered languages, Lazuri

Procedia PDF Downloads 302
7 Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties

Authors: N. Bakradze, T. Dumbadze, N. Gagelidze, L. Amiranashvili, A. D. L. Batako

Abstract:

Cereals are considered as a strategic product in human life and it demand is increasing with the growth of world population. There is always shortage of cereals in various areas of the globe. For example, Georgia own production meets only 15-20% of the demand for grain, despite the fact that the country is considered one of the main centers of wheat origin. In Georgia, there are 14 types of wheat and more than 150 subspecies, and 40 subspecies of common wheat. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing of the Azospirillum brasilensse bacteria. In the region there are Dika and Lomtagora which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Dicka excellent properties are due to its strong immunity to fungal diseases; Dicka grains are rich in protein and lysine. Lomtagora 126 differs with its winter and drought resistance, and, it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. The plant is moderately resistant to fungal diseases. This paper presents some preliminary experimental results where, a continuous CO2 laser at a power of 25-40 W/cm2 was used to radiate grains at a flow rate of 10-15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. of Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with Azospirillum brasilensse isolate (108-109 CFU / ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. In the case of the variety Lomtagora 126, when irradiated at an angle of 90°, it slightly improved the growth within 38 days of sawing, and in the case of irradiation at an angle of 90°+1, by 23%. The treatment of seeds with Azospirillum brazilense in both irradiated and non-irradiated variants led to an improvement in the growth of ssprouts. However, in the case of treatment with azospiril alone - by 22%, and with joint treatment of seeds with azospiril and irradiation - by 29%. In the case of the Dika wheat, the irradiation only led to an increase in growth by 8-9%, and the combine treatment of seeds with azospiril and irradiation - by 10-15%, in comparison with the control. Thus, the combine treatment of wheat of different varieties provided the best effect on the growth. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant number CARYS 19-573)

Keywords: laser treatment, Azospirillum brasilensse, seeds, wheat varieties, Lomtagora, Dika

Procedia PDF Downloads 114
6 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 331
5 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 369
4 Cockpit Integration and Piloted Assessment of an Upset Detection and Recovery System

Authors: Hafid Smaili, Wilfred Rouwhorst, Paul Frost

Abstract:

The trend of recent accident and incident cases worldwide show that the state-of-the-art automation and operations, for current and future demanding operational environments, does not provide the desired level of operational safety under crew peak workload conditions, specifically in complex situations such as loss-of-control in-flight (LOC-I). Today, the short term focus is on preparing crews to recognise and handle LOC-I situations through upset recovery training. This paper describes the cockpit integration aspects and piloted assessment of both a manually assisted and automatic upset detection and recovery system that has been developed and demonstrated within the European Advanced Cockpit for Reduction Of StreSs and workload (ACROSS) programme. The proposed system is a function that continuously monitors and intervenes when the aircraft enters an upset and provides either manually pilot-assisted guidance or takes over full control of the aircraft to recover from an upset. In order to mitigate the highly physical and psychological impact during aircraft upset events, the system provides new cockpit functionalities to support the pilot in recovering from any upset both manually assisted and automatically. A piloted simulator assessment was made in Oct-Nov 2015 using ten pilots in a representative civil large transport fly-by-wire aircraft in terms of the preference of the tested upset detection and recovery system configurations to reduce pilot workload, increase situational awareness and safe interaction with the manually assisted or automated modes. The piloted simulator evaluation of the upset detection and recovery system showed that the functionalities of the system are able to support pilots during an upset. The experiment showed that pilots are willing to rely on the guidance provided by the system during an upset. Thereby, it is important for pilots to see and understand what the aircraft is doing and trying to do especially in automatic modes. Comparing the manually assisted and the automatic recovery modes, the pilot’s opinion was that an automatic recovery reduces the workload so that they could perform a proper screening of the primary flight display. The results further show that the manually assisted recoveries, with recovery guidance cues on the cockpit primary flight display, reduced workload for severe upsets compared to today’s situation. The level of situation awareness was improved for automatic upset recoveries where the pilot could monitor what the system was trying to accomplish compared to automatic recovery modes without any guidance. An improvement in situation awareness was also noticeable with the manually assisted upset recovery functionalities as compared to the current non-assisted recovery procedures. This study shows that automatic upset detection and recovery functionalities are likely to positively impact the operational safety by means of reduced workload, improved situation awareness and crew stress reduction. It is thus believed that future developments for upset recovery guidance and loss-of-control prevention should focus on automatic recovery solutions.

Keywords: aircraft accidents, automatic flight control, loss-of-control, upset recovery

Procedia PDF Downloads 181
3 Intended Use of Genetically Modified Organisms, Advantages and Disadvantages

Authors: Pakize Ozlem Kurt Polat

Abstract:

GMO (genetically modified organism) is the result of a laboratory process where genes from the DNA of one species are extracted and artificially forced into the genes of an unrelated plant or animal. This technology includes; nucleic acid hybridization, recombinant DNA, RNA, PCR, cell culture and gene cloning techniques. The studies are divided into three groups of properties transferred to the transgenic plant. Up to 59% herbicide resistance characteristic of the transfer, 28% resistance to insects and the virus seems to be related to quality characteristics of 13%. Transgenic crops are not included in the commercial production of each product; mostly commercial plant is soybean, maize, canola, and cotton. Day by day increasing GMO interest can be listed as follows; Use in the health area (Organ transplantation, gene therapy, vaccines and drug), Use in the industrial area (vitamins, monoclonal antibodies, vaccines, anti-cancer compounds, anti -oxidants, plastics, fibers, polyethers, human blood proteins, and are used to produce carotenoids, emulsifiers, sweeteners, enzymes , food preservatives structure is used as a flavor enhancer or color changer),Use in agriculture (Herbicide resistance, Resistance to insects, Viruses, bacteria, fungi resistance to disease, Extend shelf life, Improving quality, Drought , salinity, resistance to extreme conditions such as frost, Improve the nutritional value and quality), we explain all this methods step by step in this research. GMO has advantages and disadvantages, which we explain all of them clearly in full text, because of this topic, worldwide researchers have divided into two. Some researchers thought that the GMO has lots of disadvantages and not to be in use, some of the researchers has opposite thought. If we look the countries law about GMO, we should know Biosafety law for each country and union. For this Biosecurity reasons, the problems caused by the transgenic plants, including Turkey, to minimize 130 countries on 24 May 2000, ‘the United Nations Biosafety Protocol’ signed nudes. This protocol has been prepared in addition to Cartagena Biosafety Protocol entered into force on September 11, 2003. This protocol GMOs in general use by addressing the risks to human health, biodiversity and sustainable transboundary movement of all GMOs that may affect the prevention, transit covers were dealt and used. Under this protocol we have to know the, ‘US Regulations GMO’, ‘European Union Regulations GMO’, ‘Turkey Regulations GMO’. These three different protocols have different applications and rules. World population increasing day by day and agricultural fields getting smaller for this reason feeding human and animal we should improve agricultural product yield and quality. Scientists trying to solve this problem and one solution way is molecular biotechnology which is including the methods of GMO too. Before decide to support or against the GMO, should know the GMO protocols and it effects.

Keywords: biotechnology, GMO (genetically modified organism), molecular marker

Procedia PDF Downloads 209
2 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 60
1 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study

Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre

Abstract:

Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.

Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.

Procedia PDF Downloads 90