Search results for: John Christian Lequiron
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 942

Search results for: John Christian Lequiron

222 Unity and Diversity Under Islam: A 21st Century Sufi Master’s Perspective

Authors: Ayşe Büşra Yakut Kubaş

Abstract:

This paper addresses a long-standing theological conflict within the “Abrahamic religions” by presenting the views of the 21st century Sufi master Haji Galip Hasan Kuşçuoğlu (1919-2013). The orthodox theological viewpoints share a confessional salvation concept in which only the followers of their prophet will be redeemed and rewarded while the rest of the world will be banished to hell. The conveyed commandments, sharīʿahs have been regarded as separate religions each claiming none will enter Paradise except those of their own faith. In contrast to this orthodox hierarchal conception, an interconfessional universalism manifests itself within the works of various Sufi masters such as Yunus Emre and Maulana Jalaluddin Rumi (13th century) and more recently the founder of Galibi Order Haji Galip H. Kuşçuoğlu who supports a peaceful coexistence and respect for multiplicity under the religion of Allah. Bringing evidence from a number of ayahs in the Qur’an (e.g. 2:62, 111-112, 131-133, 136, 285; 3:113-114; 4:123-125, 5:43-44, 47-48, 51, 66-69, 112), Kuşçuoğlu argues that whoever submits themselves to Allah, meaning the One and Indivisible who has no partners (112:1) is called a Muslim. There are no Abrahamic “religions” but Abraham’s “religion” which is Islam, literally translating to total devotion to Allah. Starting from the very first prophet, Adam, all the prophets sent upon the earth as mentors to humanity revealed that there is no god but Allah and thus in the proper meaning of the word, they were Muslims. When it comes to those who follow the shariah of Moses, Jesus or Muhammed are called Judaic Muslims, Christian Muslims and Muhammadian Muslims respectively and as such they are brothers and sisters, which is why Islam cannot be a property of Muhammadian Muslims only. Kuşçuoğlu underscores the ayahs which show that the Qur’an does not abrogate other scriptures but completes them and Allah does not banish the People of the Book to hell but gives good tidings to the believers who do good (17:9). He points out a number of intellectuals such as Goethe and Prof. Dr. Süleyman Ateş (1933-) who understood the true meaning of Islam. Goethe states that if Islam means devotion to Allah then “In Islam, we live and die all.” Kuşçuoğlu underscores the fatal consequences of this terminological misinterpretation throughout the history and emphasizes the significance of the unity of religion for the believers of Allah. His perspective provides a significant contribution to the religious conflict resolution and provides a solid basis for sustainable dialogue among the people belonging to different confessions.

Keywords: interfaith dialogue, Islam, religious conflict resolution, Sufism

Procedia PDF Downloads 56
221 Ensuring Continuity in Subcutaneous Depot Medroxy Progesterone Acetate (DMPA-SC) Contraception Service Provision Using Effective Commodity Management Practices

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: The Delivering Innovations in Selfcare (DISC) project aims to increase access to self-care options for women of reproductive age, starting with self-inject subcutaneous depot medroxyprogesterone acetate (DMPA-SC) contraception services. However, the project has faced challenges in ensuring the continuous availability of the commodity in health facilities. Although most states in the country rely on the federal ministry of Health for supplies, some are gradually funding the procurement of Family Planning (FP) commodities. This attempt is, however, often accompanied by procurement delays and purchases inadequate to meet demand. This dilemma was further exacerbated by the commencement of demand generation activities by the project in supported states which geometrically increased commodity utilization rates and resulted in receding stock and occasional service disruptions. Strategies: The project deployed various strategies were implemented to ensure the continuous availability of commodities. These include facilitating inter-facility transfer, monthly tracking of commodity utilization, and alerting relevant authorities when stock levels reach a minimum. And supporting state-level procurement of DMPA-SC commodities through catalytic interventions. Results: Effective monitoring of commodity inventory at the facility level and strategic engagement with federal and state-level logistics units have proven successful in mitigating stock-out of commodities. It has helped secure up to 13,000 units of DMPA-SC commodities from federal logistics units and enabled state units to prioritize supported sites. This has ensured the continuity of DMPA-SC services and an increasing trend in the practice of self-injection. Conclusion: A functional supply chain is crucial to achieving commodity security, and without it, health programs cannot succeed. Stakeholder engagement, stock management and catalytic interventions have provided both short- and long-term measures to mitigate stock-outs and ensured a consistent supply of commodities to clients.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, commodities, stock-out

Procedia PDF Downloads 52
220 Developing Cultural Competence as Part of Nursing Studies: Language, Customs and Health Issues

Authors: Mohammad Khatib, Salam Hadid

Abstract:

Introduction: Developing nurses' cultural competence begins in their basic training and requires them to participate in an array of activities which raise their awareness and stimulate their interest, desire and curiosity about different cultures, by creating opportunities for intercultural meetings promoting the concept of 'culture' and its components, including recognition of cultural diversity and the legitimacy of the other. Importantly, professionals need to acquire specific cultural knowledge and thorough understanding of the values, norms, customs, beliefs and symbols of different cultures. Similarly, they need to be given opportunities to practice the verbal and non-verbal communication skills of other cultures according to their cultural codes. Such a system is being implemented as part of nursing studies at Zefat Academic College in two study frameworks; firstly, a course integrating nursing theory and practice in multicultural nursing; secondly, a course in learning the languages spoken in Israel focusing on medical and nursing terminology. Methods: Students participating in the 'Transcultural Nursing' course come from a variety of backgrounds: Jews, or Arabs, religious, or secular; Muslim, Christian, new immigrants, Ethiopians or from other cultural affiliations. They are required to present and discuss cultural practices that affect health. In addition, as part of the language course, students learn and teach their friends 5 spoken languages (Arabic, Russian, Amharian, Yidish, and Sign language) focusing on therapeutic interaction and communication using the vocabulary and concepts necessary for the therapeutic encounter. An evaluation of the process and the results was done using a structured questionnaire which includes series of questions relating to the contributions of the courses to their cultural knowledge, awareness and skills. 155 students completed the questionnaire. Results: A preliminary assessment of this educational system points an increase in cultural awareness and knowledge among the students as well as in their willingness to recognize the other's difference. A positive atmosphere of multiculturalism is reflected in students' mutual interest and respect was created. Students showed a deep understanding of cultural issues relating to health and care (consanguinity and genetics, food customs; cultural events, reincarnation, traditional treatments etc.). Most of the students were willing to recommend the courses to others and suggest some changes relating learning methods (more simulations, role playing and activities).

Keywords: cultural competence, nursing education, culture, language

Procedia PDF Downloads 253
219 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 177
218 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 72
217 Estimating the Timing Interval for Malarial Indoor Residual Spraying: A Modelling Approach

Authors: Levicatus Mugenyi, Joaniter Nankabirwa, Emmanuel Arinaitwe, John Rek, Niel Hens, Moses Kamya, Grant Dorsey

Abstract:

Background: Indoor residual spraying (IRS) reduces vector densities and malaria transmission, however, the most effective spraying intervals for IRS have not been well established. We aim to estimate the optimal timing interval for IRS using a modeling approach. Methods: We use a generalized additive model to estimate the optimal timing interval for IRS using the predicted malaria incidence. The model is applied to post IRS cohort clinical data from children aged 0.5–10 years in selected households in Tororo, historically a high malaria transmission setting in Uganda. Six rounds of IRS were implemented in Tororo during the study period (3 rounds with bendiocarb: December 2014 to December 2015, and 3 rounds with actellic: June 2016 to July 2018). Results: Monthly incidence of malaria from October 2014 to February 2019 decreased from 3.25 to 0.0 per person-years in the children under 5 years, and 1.57 to 0.0 for 5-10 year-olds. The optimal time interval for IRS differed between bendiocarb and actellic and by IRS round. It was estimated to be 17 and 40 weeks after the first round of bendiocarb and actellic, respectively. After the third round of actellic, 36 weeks was estimated to be optimal. However, we could not estimate from the data the optimal time after the second and third rounds of bendiocarb and after the second round of actellic. Conclusion: We conclude that to sustain the effect of IRS in a high-medium transmission setting, the second rounds of bendiocarb need to be applied roughly 17 weeks and actellic 40 weeks after the first round, and the timing differs for subsequent rounds. The amount of rainfall did not influence the trend in malaria incidence after IRS, as well as the IRS timing intervals. Our results suggest that shorter intervals for the IRS application can be more effective compared to the current practice, which is about 24 weeks for bendiocarb and 48 weeks for actellic. However, when considering our findings, one should account for the cost and drug resistance associated with IRS. We also recommend that the timing and incidence should be monitored in the future to improve these estimates.

Keywords: incidence, indoor residual spraying, generalized additive model, malaria

Procedia PDF Downloads 97
216 Synergism in the Inquiry Lab: An Analysis of Time Targets and Achievement

Authors: John M. Basey, Clinton D. Francis, Maxwell B. Joseph

Abstract:

After gathering data from experimental procedures, inquiry-oriented-science labs often allow students the freedom to stay and complete the write up in class or leave lab early and complete the write up later. Teachers must decide whether to allow students this freedom to self-regulate this time. Student interviews have indicated four time-target strategies that may influence how students utilize this time: grade-target-A, grade-target-C, time-limited, and proficiency. The hypothesis tested was that variability in class composition relative to the four grade-target strategies has an impact on when students leave class, which in turn may influence their overall learning as exemplified by grades. Students were divided into the four indicated groups with a survey. Class composition and the GTA teaching the class had significant impacts on how long students stayed in class with class composition having the greatest impact. A factor analysis identified two factors. Factor 1 included classes with percentages of grade-target students opposite time-limited/proficiency students and explained 43% of the variance. Factor 2 included classes with percentages of grade-target-A/proficiency students opposite grade-target-C students and explained 33% of the variance. Students who stayed longer received significantly higher grades (P = 0.008) with no significant relationships between grade and Factor 1 or Factor 2 (P > 0.05). The time students stayed in class was significantly positively related to Factor 1 (P = 0.006) and significantly negatively related to Factor 2 (P = 0.008). These results support the hypothesis and indicate that teachers may want to know the composition of student-target strategies before deciding on how to have students allocate study time at the end of inquiry-oriented labs. According to these results, ideal classes for self-regulation have a high proportion of proficiency and time-limited students and a low proportion of grade-target students, or a high proportion of grade-target-A and proficiency students and a low proportion of grade-target-C students. Non-ideal classes for self-regulation were comprised of the inverse proportions.

Keywords: grades, inquiry lab design, synergism in student motivation, class composition

Procedia PDF Downloads 97
215 Indoor Air Assessment and Health Risk of Volatile Organic Compounds in Secondary School Classrooms in Benin City, Edo State, Nigeria

Authors: Osayomwanbor E. Oghama, John O. Olomukoro

Abstract:

The school environment, apart from home, is probably the most important indoor environment for children. Children spend as much as 80-90% of their indoor time either at school or at home; an average of 35 - 40 hours per week in schools, hence are at the risk of indoor air pollutants such as volatile organic compounds (VOCs). Concentrations of VOCs vary widely but are generally higher indoors than outdoors. This research was, therefore, carried out to evaluate the levels of VOCs in secondary school classrooms in Benin City, Edo State. Samples were obtained from a total of 18 classrooms in 6 secondary schools. Samples were collected 3 times from each school and from 3 different classrooms in each school using Draeger ORSA 5 tubes. Samplers were left to stay for a school-week (5 days). The VOCs detected and analyzed were benzene, ethlybenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene, m-xylene, p-xylene, o-xylene, styrene, chlorobenzene, chloroform, 1,2-dichloropropane, 2,2-dichloropropane, tetrachloroethane, tetrahydrofuran, isopropyl acetate, α-pinene, and camphene. The results showed that chloroform, o-xylene, and styrene were the most abundant while α-pinene and camphene were the least abundant. The health risk assessment was done in terms of carcinogenic (CRI) and non-carcinogenic risks (THR). The CRI values of the schools ranged from 1.03 × 10-5 to 1.36 × 10-5 μg/m³ (a mean of 1.16 × 10-5 μg/m³) with School 6 and School 3 having the highest and lowest values respectively. The THR values of the study schools ranged from 0.071-0.086 μg/m³ (a mean of 0.078 μg/m³) with School 3 and School 2 having the highest and lowest values respectively. The results show that all the schools pose a potential carcinogenic risks having CRI values greater than the recommended limit of 1 × 10-6 µg/m³ and no non-carcinogenic risk having THR values less than the USEPA hazard quotient of 1 µg/m³. It is recommended that school authorities should ensure adequate ventilation in their schools, supplementing natural ventilation with mechanical sources, where necessary. In addition, indoor air quality should be taken into consideration in the design and construction of classrooms.

Keywords: carcinogenic risk indicator, health risk, indoor air, non-carcinogenic risk indicator, secondary schools, volatile organic compounds

Procedia PDF Downloads 164
214 Electrochemical Inactivation of Toxic Cyanobacteria and Degradation of Cyanotoxins

Authors: Belal Bakheet, John Beardall, Xiwang Zhang, David McCarthy

Abstract:

The potential risks associated with toxic cyanobacteria have raised growing environmental and public health concerns leading to an increasing effort into researching ways to bring about their removal from water, together with destruction of their associated cyanotoxins. A variety of toxins are synthesized by cyanobacteria and include hepatotoxins, neurotoxins, and cytotoxins which can cause a range of symptoms in humans from skin irritation to serious liver and nerve damage. Therefore drinking water treatment processes should ensure the consumers’ safety by removing both cyanobacterial cells, and cyanotoxins from the water. Cyanobacterial cells and cyanotoxins presented challenges to the conventional water treatment systems; their accumulation within drinking water treatment plants has been reported leading to plants shut down. Thus, innovative and effective water purification systems to tackle cyanobacterial pollution are required. In recent years there has been increasing attention to the electrochemical oxidation process as a feasible alternative disinfection method which is able to generate in situ a variety of oxidants that would achieve synergistic effects in the water disinfection process and toxin degradation. By utilizing only electric current, the electrochemical process through electrolysis can produce reactive oxygen species such as hydroxyl radicals from the water, or other oxidants such as chlorine from chloride ions present in the water. From extensive physiological and morphological investigation of cyanobacterial cells during electrolysis, our results show that these oxidants have significant impact on cell inactivation, simultaneously with cyanotoxins removal without the need for chemicals addition. Our research aimed to optimize existing electrochemical oxidation systems and develop new systems to treat water containing toxic cyanobacteria and cyanotoxins. The research covers detailed mechanism study on oxidants production and cell inactivation in the treatment under environmental conditions. Overall, our study suggests that the electrochemical treatment process e is an effective method for removal of toxic cyanobacteria and cyanotoxins.

Keywords: toxic cyanobacteria, cyanotoxins, electrochemical process, oxidants

Procedia PDF Downloads 206
213 Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania

Authors: Y. A. Prada, Fanny Guzman, Rafael Cabanzo, John J. Castillo, Enrique Mejia-Ospino

Abstract:

In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania.

Keywords: biosensing, fluorescence, Leishmania, peptide-gold nanoclusters, proteophosphoglycans

Procedia PDF Downloads 142
212 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 297
211 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting

Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh

Abstract:

In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).

Keywords: windrow, swine manure, ammonia, nitrous oxide, fluxes, management

Procedia PDF Downloads 332
210 Health Outcomes from Multidrug-Resistant Salmonella in High-Income Countries: A Systematic Review and Meta-Analysis

Authors: Andrea Parisi, Samantha Vilkins, Luis Furuya-Kanamori, John A. Crump, Benjamin P. Howden, Darren Gray, Kathryn Glass, Martyn Kirk

Abstract:

Objectives: Salmonella is a leading cause of foodborne enterocolitis worldwide. Nontyphoidal Salmonella (NTS) infections that are Multi-Drug Resistant (MDR) (non-susceptible to ≥1 agent in ≥3 antimicrobial categories) may result in more severe outcomes, although these effects have not been systematically examined. We conducted a systematic review and meta-analysis to examine impacts of MDR NTS on health in high-income settings. Methods: We systematically reviewed the literature from scientific databases, including PubMed, Scopus and grey literature sources, using PRISMA guidelines. We searched for data from case-control studies, cohorts, outbreaks, reports and theses, imposing no language restriction. We included only publications from January 1990 to September 2016 from high income countries as classified by World Bank. We extracted data from papers on duration of illness, hospitalisation rates, morbidity and mortality for MDR and non-MDR NTS strains. Results: After removing duplicates, the initial search revealed 4258 articles. After further screening, we identified 16 eligible studies for the systematic review, and 9 of these were included in meta-analysis. NTS serotypes differed among the reported studies but serotype Typhimurium, Enteritidis, Newport and Heidelberg were among the most often reported as MDR pathogens. Salmonella infections that were MDR were associated with excess bloodstream infections (OR 1.63; 95%CI 1.18-2.26), excess hospitalisations (OR 2.77; 95%CI 1.47-5.21) and higher mortality (OR 3.54; 95%CI 1.10-11.40). Conclusions: MDR NTS infections are a serious public health concern. With the emergence of MDR Salmonella strains in the high-income countries, it is crucial to restrict the use of antimicrobials both in animals and humans, and intervene to prevent foodborne infections.

Keywords: Antimicrobial Resistance, Bloodstream Infection, Health Outcomes, Hospitalisation, Invasive Disease, Multi-Drug Resistance (MDR), Mortality, Nontyphoidal Salmonella

Procedia PDF Downloads 351
209 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal

Procedia PDF Downloads 428
208 New Derivatives 7-(diethylamino)quinolin-2-(1H)-one Based Chalcone Colorimetric Probes for Detection of Bisulfite Anion in Cationic Micellar Media

Authors: Guillermo E. Quintero, Edwin G. Perez, Oriel Sanchez, Christian Espinosa-Bustos, Denis Fuentealba, Margarita E. Aliaga

Abstract:

Bisulfite ion (HSO3-) has been used as a preservative in food, drinks, and medication. However, it is well-known that HSO3- can cause health problems like asthma and allergic reactions in people. Due to the above, the development of analytical methods for detecting this ion has gained great interest. In line with the above, the current use of colorimetric and/or fluorescent probes as a detection technique has acquired great relevance due to their high sensitivity and accuracy. In this context, 2-quinolinone derivatives have been found to possess promising activity as antiviral agents, sensitizers in solar cells, antifungals, antioxidants, and sensors. In particular, 7-(diethylamino)-2-quinolinone derivatives have attracted attention in recent years since their suitable photophysical properties become promising fluorescent probes. In Addition, there is evidence that photophysical properties and reactivity can be affected by the study medium, such as micellar media. Based on the above background, 7-(diethylamino)-2-quinolinone derivatives based chalcone will be able to be incorporated into a cationic micellar environment (Cetyltrimethylammonium bromide, CTAB). Furthermore, the supramolecular control induced by the micellar environment will increase the reactivity of these derivatives towards nucleophilic analytes such as HSO3- (Michael-type addition reaction), leading to the generation of new colorimetric and/or fluorescent probes. In the present study, two derivatives of 7-(diethylamino)-2-quinolinone based chalcone DQD1-2 were synthesized according to the method reported by the literature. These derivatives were structurally characterized by 1H, 13C NMR, and HRMS-ESI. In addition, UV-VIS and fluorescence studies determined absorption bands near 450 nm, emission bands near 600 nm, fluorescence quantum yields near 0.01, and fluorescence lifetimes of 5 ps. In line with the foregoing, these photophysical properties aforementioned were improved in the presence of a cationic micellar medium using CTAB thanks to the formation of adducts presenting association constants of the order of 2,5x105 M-1, increasing the quantum yields to 0.12 and the fluorescence lifetimes corresponding to two lifetimes near to 120 and 400 ps for DQD1 and DQD2. Besides, thanks to the presence of the micellar medium, the reactivity of these derivatives with nucleophilic analytes, such as HSO3-, was increased. This was achieved through kinetic studies, which demonstrated an increase in the bimolecular rate constants in the presence of a micellar medium. Finally, probe DQD1 was chosen as the best sensor since it was assessed to detect HSO3- with excellent results.

Keywords: bisulfite detection, cationic micelle, colorimetric probes, quinolinone derivatives

Procedia PDF Downloads 61
207 Bringing German History to Tourists

Authors: Gudrun Görlitz, Christian Schölzel, Alexander Vollmar

Abstract:

Sites of Jewish Life in Berlin 1933-1945. Between Persecution and Self-assertion” was realized in a project funded by the European Regional Development Fund. A smartphone app, and a associated web site enable tourists and other participants of this educational offer to learn in a serious way more about the life of Jews in the German capital during the Nazi era. Texts, photos, video and audio recordings communicate the historical content. Interactive maps (both current and historical) make it possible to use predefined or self combined routes. One of the manifold challenges was to create a broad ranged guide, in which all detailed information are well linked with each other. This enables heterogeneous groups of potential users to find a wide range of specific information, corresponding with their particular wishes and interests. The multitude of potential ways to navigate through the diversified information causes (hopefully) the users to utilize app and web site for a second or third time and with a continued interest. Therefore 90 locations, a lot of them situated in Berlin’s city centre, have been chosen. For all of them text-, picture and/or audio/video material gives extensive information. Suggested combinations of several of these “site stories” are leading to the offer of detailed excursion routes. Events and biographies are also presented. A few of the implemented biographies are especially enriched with source material concerning the aspect of (forced) migration of these persons during the Nazi time. All this was done in a close and fruitful interdisciplinary cooperation of computer scientists and historians. The suggested conference paper aims to show the challenges shaping complex source material for practical use by different user-groups in a proper technical and didactic way. Based on the historical research in archives, museums, libraries and digital resources the quantitative dimension of the project can be sized as follows: The paper focuses on the following historiographical and technical aspects: - Shaping the text material didactically for the use in new media, especially a Smartphone-App running on differing platforms; - Geo-referencing of the sites on historical and current map material; - Overlay of old and new maps to present and find the sites; - Using Augmented Reality technologies to re-visualize destroyed buildings; - Visualization of black-/white-picture-material; - Presentation of historical footage and the resulting problems to need too much storage space; - Financial and juridical aspects in gaining copyrights to present archival material.

Keywords: smartphone app, history, tourists, German

Procedia PDF Downloads 345
206 Memory Retrieval and Implicit Prosody during Reading: Anaphora Resolution by L1 and L2 Speakers of English

Authors: Duong Thuy Nguyen, Giulia Bencini

Abstract:

The present study examined structural and prosodic factors on the computation of antecedent-reflexive relationships and sentence comprehension in native English (L1) and Vietnamese-English bilinguals (L2). Participants read sentences presented on the computer screen in one of three presentation formats aimed at manipulating prosodic parsing: word-by-word (RSVP), phrase-segment (self-paced), or whole-sentence (self-paced), then completed a grammaticality rating and a comprehension task (following Pratt & Fernandez, 2016). The design crossed three factors: syntactic structure (simple; complex), grammaticality (target-match; target-mismatch) and presentation format. An example item is provided in (1): (1) The actress that (Mary/John) interviewed at the awards ceremony (about two years ago/organized outside the theater) described (herself/himself) as an extreme workaholic). Results showed that overall, both L1 and L2 speakers made use of a good-enough processing strategy at the expense of more detailed syntactic analyses. L1 and L2 speakers’ comprehension and grammaticality judgements were negatively affected by the most prosodically disrupting condition (word-by-word). However, the two groups demonstrated differences in their performance in the other two reading conditions. For L1 speakers, the whole-sentence and the phrase-segment formats were both facilitative in the grammaticality rating and comprehension tasks; for L2, compared with the whole-sentence condition, the phrase-segment paradigm did not significantly improve accuracy or comprehension. These findings are consistent with the findings of Pratt & Fernandez (2016), who found a similar pattern of results in the processing of subject-verb agreement relations using the same experimental paradigm and prosodic manipulation with English L1 and L2 English-Spanish speakers. The results provide further support for a Good-Enough cue model of sentence processing that integrates cue-based retrieval and implicit prosodic parsing (Pratt & Fernandez, 2016) and highlights similarities and differences between L1 and L2 sentence processing and comprehension.

Keywords: anaphora resolution, bilingualism, implicit prosody, sentence processing

Procedia PDF Downloads 121
205 Adjustment of the Whole-Body Center of Mass during Trunk-Flexed Walking across Uneven Ground

Authors: Soran Aminiaghdam, Christian Rode, Reinhard Blickhan, Astrid Zech

Abstract:

Despite considerable studies on the impact of imposed trunk posture on human walking, less is known about such locomotion while negotiating changes in ground level. The aim of this study was to investigate the behavior of the VBCOM in response to a two-fold expected perturbation, namely alterations in body posture and in ground level. To this end, the kinematic data and ground reaction forces of twelve able participants were collected. We analyzed the vertical position of the body center of mass (VBCOM) from the ground determined by the body segmental analysis method relative to the laboratory coordinate system at touchdown and toe-off instants during walking across uneven ground — characterized by perturbation contact (a 10-cm visible drop) and pre- and post-perturbation contacts — in comparison to unperturbed level contact while maintaining three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). The VBCOM was normalized to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD. Moreover, we calculated the backward rotation during step-down as the difference of the maximum of the trunk angle in the pre-perturbation contact and the minimal trunk angle in the perturbation contact. Two-way repeated measures ANOVAs revealed contact-specific effects of posture on the VBCOM at touchdown (F = 5.96, p = 0.00). As indicated by the analysis of simple main effects, during unperturbed level and pre-perturbation contacts, no between-posture differences for the VBCOM at touchdown were found. In the perturbation contact, trunk-flexed gaits showed a significant increase of VBCOM as compared to the pre-perturbation contact. In the post-perturbation contact, the VBCOM demonstrated a significant decrease in all gait postures relative to the preceding corresponding contacts with no between-posture differences. Main effects of posture revealed that the VBCOM at toe-off significantly decreased in trunk-flexed gaits relative to the regular erect gait. For the main effect of contact, the VBCOM at toe-off demonstrated changes across perturbation and post-perturbation contacts as compared to the unperturbed level contact. Furthermore, participants exhibited a backward trunk rotation during step-down possibly to control the angular momentum of their whole body. A more pronounced backward trunk rotation (2- to 3-fold compared with level contacts) in trunk-flexed walking contributed to the observed elevated VBCOM during the step-down which may have facilitated drop negotiation. These results may shed light on the interaction between posture and locomotion in able gait, and specifically on the behavior of the body center of mass during perturbed locomotion.

Keywords: center of mass, perturbation, posture, uneven ground, walking

Procedia PDF Downloads 153
204 Gait Analysis in Total Knee Arthroplasty

Authors: Neeraj Vij, Christian Leber, Kenneth Schmidt

Abstract:

Introduction: Total knee arthroplasty is a common procedure. It is well known that the biomechanics of the knee do not fully return to their normal state. Motion analysis has been used to study the biomechanics of the knee after total knee arthroplasty. The purpose of this scoping review is to summarize the current use of gait analysis in total knee arthroplasty and to identify the preoperative motion analysis parameters for which a systematic review aimed at determining the reliability and validity may be warranted. Materials and Methods: This IRB-exempt scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist strictly. Five search engines were searched for a total of 279 articles. Articles underwent a title and abstract screening process followed by full-text screening. Included articles were placed in the following sections: the role of gait analysis as a research tool for operative decisions, other research applications for motion analysis in total knee arthroplasty, gait analysis as a tool in predicting radiologic outcomes, gait analysis as a tool in predicting clinical outcomes. Results: Eleven articles studied gait analysis as a research tool in studying operative decisions. Motion analysis is currently used to study surgical approaches, surgical techniques, and implant choice. Five articles studied other research applications for motion analysis in total knee arthroplasty. Other research applications for motion analysis currently include studying the role of the unicompartmental knee arthroplasty and novel physical therapy protocols aimed at optimizing post-operative care. Two articles studied motion analysis as a tool for predicting radiographic outcomes. Preoperative gait analysis has identified parameters than can predict postoperative tibial component migration. 15 articles studied motion analysis in conjunction with clinical scores. Conclusions: There is a broad range of applications within the research domain of total knee arthroplasty. The potential application is likely larger. However, the current literature is limited by vague definitions of ‘gait analysis’ or ‘motion analysis’ and a limited number of articles with preoperative and postoperative functional and clinical measures. Knee adduction moment, knee adduction impulse, total knee range of motion, varus angle, cadence, stride length, and velocity have the potential for integration into composite clinical scores. A systematic review aimed at determining the validity, reliability, sensitivities, and specificities of these variables is warranted.

Keywords: motion analysis, joint replacement, patient-reported outcomes, knee surgery

Procedia PDF Downloads 67
203 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor under Liquefaction and Scour

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg, Christian Windt

Abstract:

When a structure is installed on a seabed, the presence of the structure will influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scour On fixed structures (bridges and Monopiles) in rivers and oceans has been carried out, and very limited research work on scour and liquefaction for gravity anchors, particularly for floating Tension Leg Platform (TLP) substructures. Due to its importance and need for enhancement of knowledge in scour and liquefaction around marine structures, the MarTERA funded a three-year (2020-2023) research program called NuLIMAS (Numerical Modeling of Liquefaction Around Marine Structures). It’s a group consists of European institutions (Universities, laboratories, and consulting companies). The objective of this study is to build a numerical model that replicates the reality, which indeed helps to simulate (predict) underwater flow conditions and to study different marine scour and Liquefication situations. It helps to design a heavyweight anchor for the TLP substructure and to minimize the time and expenditure on experiments. And also, the achieved results and the numerical model will be a basis for the development of other design and concepts For marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM. A conceptual design of heavyweight anchor for TLP substructure is designed through taking considerations of available state-of-the-art knowledge on scour and Liquefication concepts and references to Previous existing designs. These conceptual designs are validated with the available similar experimental benchmark data and also with the CFD numerical benchmark standards (CFD quality assurance study). CFD optimization model/tool is designed as to minimize the effect of fluid flow, scour, and Liquefication. A parameterized model is also developed to automate the calculation process to reduce user interactions. The parameters such as anchor Lowering Process, flow optimized outer contours, seabed interaction study, and FSSI (Fluid-Structure-Seabed Interactions) are investigated and used to carve the model as to build an optimized anchor.

Keywords: gravity anchor, liquefaction, scour, computational fluid dynamics

Procedia PDF Downloads 121
202 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 106
201 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects

Authors: Rabea Sefrin, Christian Glock, Juergen Schnell

Abstract:

The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.

Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation

Procedia PDF Downloads 90
200 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering

Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola

Abstract:

Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.

Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials

Procedia PDF Downloads 33
199 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 244
198 A Descriptive Study of the Mineral Content of Conserved Forage Fed to Horses in the United Kingdom, Ireland, and France

Authors: Louise Jones, Rafael De Andrade Moral, John C. Stephens

Abstract:

Background: Minerals are an essential component of correct nutrition. Conserved hay/haylage is an important component of many horse's diets. Variations in the mineral content of conserved forage should be considered when assessing dietary intake. Objectives: This study describes the levels and differences in 15 commonly analysed minerals in conserved forage fed to horses in the United Kingdom (UK), Ireland (IRL), and France (FRA). Methods: Hay (FRA n=92, IRL n=168, UK n=152) and haylage samples (UK n=287, IRL n=49) were collected during 2017-2020. Mineral analysis was undertaken using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed using beta regression, Gaussian, or gamma models, depending on the nature of the response variable. Results: There are significant differences in the mineral content of the UK, IRL, and FRA conserved forage samples. FRA hay samples had a significantly higher (p < 0.05) levels of Sulphur (0.16 ± 0.0051 %), Calcium (0.56 ± 0.0342%), Magnesium (0.16 ± 0.0069 mg/ kg DM), Iron (194 ± 23.0 mg/kg DM), Cobalt (0.21 ± 0.0244 mg/kg DM) and Copper (4.94 ± 0.196 mg/kg DM) content compared to hay from the other two countries. UK hay samples had significantly less (p < 0.05) Selenium (0.07 ± 0.0084 mg/kg DM), whilst IRL hay samples were significantly (p < 0.05) higher in Chloride (0.9 ± 0.026mg/kg DM) compared to hay from the other two countries. IRL haylage samples were significantly (p < 0.05) higher in Phosphorus (0.26 ± 0.0102 %), Sulphur (0.17 ± 0.0052 %), Chloride (1.01 ± 0.0519 %), Calcium (0.54 ± 0.0257 %), Selenium (0.17 ± 0.0322 mg/kg DM) and Molybdenum (1.47 ± 0.137 mg/kg DM) compared to haylage from the UK. Main Limitations: Forage samples were obtained from professional yards and may not be reflective of forages fed by most horse owners. Information regarding soil type, species of grass, fertiliser treatment, harvest, or storage conditions were not included in this study. Conclusions: At a DM intake of 2% body weight, conserved forage as sampled in this study will be insufficient to meet Zinc, Iodine, and Copper NRC maintenance requirements, and Se intake will also be insufficient for horses fed the UK conserved forage. Many horses receive hay/haylage as the main component of their diet; this study highlights the need to consider forage analysis when making dietary recommendations.

Keywords: conserved forage, hay, haylage, minerals

Procedia PDF Downloads 193
197 A Systematic Review of Pedometer-or Accelerometer-Based Interventions for Increasing Physical Activity in Low Socioeconomic Groups

Authors: Shaun G. Abbott, Rebecca C. Reynolds, James B. Etter, John B. F. de Wit

Abstract:

The benefits of physical activity (PA) on health are well documented. Low socioeconomic status (SES) is associated with poor health, with PA a suggested mediator. Pedometers and accelerometers offer an effective behavior change tool to increase PA levels. While the role of pedometer and accelerometer use in increasing PA is recognized in many populations, little is known in low-SES groups. We are aiming to assess the effectiveness of pedometer- and accelerometer-based interventions for increasing PA step count and improving subsequent health outcomes among low-SES groups of high-income countries. Medline, Embase, PsycINFO, CENTRAL and SportDiscus databases were searched to identify articles published before 10th July, 2015; using search terms developed from previous systematic reviews. Inclusion criteria are: low-SES participants classified by income, geography, education, occupation or ethnicity; study duration minimum 4 weeks; an intervention and control group; wearing of an unsealed pedometer or accelerometer to objectively measure PA as step counts per day for the duration of the study. We retrieved 2,142 articles from our database searches, after removal of duplicates. Two investigators independently reviewed titles and abstracts of these articles (50% each) and a combined 20% sample were reviewed to account for inter-assessor variation. We are currently verifying the full texts of 430 articles. Included studies will be critically appraised for risk of bias using guidelines suggested by the Cochrane Public Health Group. Two investigators will extract data concerning the intervention; study design; comparators; steps per day; participants; context and presence or absence of obesity and/or chronic disease. Heterogeneity amongst studies is anticipated, thus a narrative synthesis of data will be conducted with the simplification of selected results into percentage increases from baseline to allow for between-study comparison. Results will be presented at the conference in December if selected.

Keywords: accelerometer, pedometer, physical activity, socioeconomic, step count

Procedia PDF Downloads 305
196 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media

Procedia PDF Downloads 280
195 A Call for Justice and a New Economic Paradigm: Analyzing Counterhegemonic Discourses for Indigenous Peoples' Rights and Environmental Protection in Philippine Alternative Media

Authors: B. F. Espiritu

Abstract:

This paper examines the resistance of the Lumad people, the indigenous peoples in Mindanao, Southern Philippines, and of environmental and human rights activists to the Philippine government's neoliberal policies and their call for justice and a new economic paradigm that will uphold peoples' rights and environmental protection in two alternative media online sites. The study contributes to the body of knowledge on indigenous resistance to neoliberal globalization and the quest for a new economic paradigm that upholds social justice for the marginalized in society, empathy and compassion for those who depend on the land for their survival, and environmental sustainability. The study analyzes the discourses in selected news articles from Davao Today and Kalikasan (translated to English as 'Nature') People's Network for the Environment’s statements and advocacy articles for the Lumad and the environment from 2018 to February 2020. The study reveals that the alternative media news articles and the advocacy articles contain statements that expose the oppression and violation of human rights of the Lumad people, farmers, government environmental workers, and environmental activists as shown in their killings, illegal arrest and detention, displacement of the indigenous peoples, destruction of their schools by the military and paramilitary groups, and environmental plunder and destruction with the government's permit for the entry and operation of extractive and agribusiness industries in the Lumad ancestral lands. Anchored on Christian Fuch's theory of alternative media as critical media and Bert Cammaerts' theorization of alternative media as counterhegemonic media that are part of civil society and form a third voice between state media and commercial media, the study reveals the counterhegemonic discourses of the news and advocacy articles that oppose the dominant economic system of neoliberalism which oppresses the people who depend on the land for their survival. Furthermore, the news and advocacy articles seek to advance social struggles that transform society towards the realization of cooperative potentials or a new economic paradigm that upholds economic democracy, where the local people, including the indigenous people, are economically empowered their environment and protected towards the realization of self-sustaining communities. The study highlights the call for justice, empathy, and compassion for both the people and the environment and the need for a new economic paradigm wherein indigenous peoples and local communities are empowered towards becoming self-sustaining communities in a sustainable environment.

Keywords: alternative media, environmental sustainability, human rights, indigenous resistance

Procedia PDF Downloads 119
194 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 83
193 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 371