Search results for: Feistel cipher
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: Feistel cipher

33 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level

Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil

Abstract:

This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.

Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing

Procedia PDF Downloads 371
32 Evolutional Substitution Cipher on Chaotic Attractor

Authors: Adda Ali-Pacha, Naima Hadj-Said

Abstract:

Nowadays, the security of information is primarily founded on the calculation of algorithms that confidentiality depend on the number of bits necessary to define a cryptographic key. In this work, we introduce a new chaotic cryptosystem that we call evolutional substitution cipher on a chaotic attractor. In this research paper, we take the Henon attractor. The evolutional substitution cipher on Henon attractor is based on the principle of monoalphabetic cipher and it associates the plaintext at a succession of real numbers calculated from the attractor equations.

Keywords: cryptography, substitution cipher, chaos theory, Henon attractor, evolutional substitution cipher

Procedia PDF Downloads 428
31 DCT and Stream Ciphers for Improved Image Encryption Mechanism

Authors: T. R. Sharika, Ashwini Kumar, Kamal Bijlani

Abstract:

Encryption is the process of converting crucial information’s unreadable to unauthorized persons. Image security is an important type of encryption that secures all type of images from cryptanalysis. A stream cipher is a fast symmetric key algorithm which is used to convert plaintext to cipher text. In this paper we are proposing an image encryption algorithm with Discrete Cosine Transform and Stream Ciphers that can improve compression of images and enhanced security. The paper also explains the use of a shuffling algorithm for enhancing securing.

Keywords: decryption, DCT, encryption, RC4 cipher, stream cipher

Procedia PDF Downloads 360
30 A Hill Cipher Based on the Kish-Sethuraman Protocol

Authors: Kondwani Magamba

Abstract:

In the idealized Kish-Sethuraman (KS) protocol,messages are sent between Alice and Bob each using a secret personal key. This protocol is said to be perfectly secure because both Bob and Alice keep their keys undisclosed so that at all times the message is encrypted by at least one key, thus no information is leaked or shared. In this paper, we propose a realization of the KS protocol through the use of the Hill Cipher.

Keywords: Kish-Sethuraman Protocol, Hill Cipher, MDS Matrices, encryption

Procedia PDF Downloads 355
29 A New Block Cipher for Resource-Constrained Internet of Things Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.

Keywords: internet of things, cryptography block cipher, S-box, key management, security, network

Procedia PDF Downloads 110
28 Determination of Complexity Level in Merged Irregular Transposition Cipher

Authors: Okike Benjamin, Garba Ejd

Abstract:

Today, it has been observed security of information along the superhighway is often compromised by those who are not authorized to have access to such information. In order to ensure the security of information along the superhighway, such information should be encrypted by some means to conceal the real meaning of the information. There are many encryption techniques out there in the market. However, some of these encryption techniques are often easily decrypted by adversaries. The researcher has decided to develop an encryption technique that may be more difficult to decrypt. This may be achieved by splitting the message to be encrypted into parts and encrypting each part separately and swapping the positions before transmitting the message along the superhighway. The method is termed Merged Irregular Transposition Cipher. Also, the research would determine the complexity level in respect to the number of splits of the message.

Keywords: transposition cipher, merged irregular cipher, encryption, complexity level

Procedia PDF Downloads 344
27 Determination of Complexity Level in Okike's Merged Irregular Transposition Cipher

Authors: Okike Benjami, Garba Ejd

Abstract:

Today, it has been observed security of information along the superhighway is often compromised by those who are not authorized to have access to such information. In other to ensure the security of information along the superhighway, such information should be encrypted by some means to conceal the real meaning of the information. There are many encryption techniques out there in the market. However, some of these encryption techniques are often decrypted by adversaries with ease. The researcher has decided to develop an encryption technique that may be more difficult to decrypt. This may be achieved by splitting the message to be encrypted into parts and encrypting each part separately and swapping the positions before transmitting the message along the superhighway. The method is termed Okike’s Merged Irregular Transposition Cipher. Also, the research would determine the complexity level in respect to the number of splits of the message.

Keywords: transposition cipher, merged irregular cipher, encryption, complexity level

Procedia PDF Downloads 289
26 Double Encrypted Data Communication Using Cryptography and Steganography

Authors: Adine Barett, Jermel Watson, Anteneh Girma, Kacem Thabet

Abstract:

In information security, secure communication of data across networks has always been a problem at the forefront. Transfer of information across networks is susceptible to being exploited by attackers engaging in malicious activity. In this paper, we leverage steganography and cryptography to create a layered security solution to protect the information being transmitted. The first layer of security leverages crypto- graphic techniques to scramble the information so that it cannot be deciphered even if the steganography-based layer is compromised. The second layer of security relies on steganography to disguise the encrypted in- formation so that it cannot be seen. We consider three cryptographic cipher methods in the cryptography layer, namely, Playfair cipher, Blowfish cipher, and Hills cipher. Then, the encrypted message is passed through the least significant bit (LSB) to the steganography algorithm for further encryption. Both encryption approaches are combined efficiently to help secure information in transit over a network. This multi-layered encryption is a solution that will benefit cloud platforms, social media platforms and networks that regularly transfer private information such as banks and insurance companies.

Keywords: cryptography, steganography, layered security, Cipher, encryption

Procedia PDF Downloads 82
25 Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare

Authors: M. Zayoud, S. Oueida, S. Ionescu, P. AbiChar

Abstract:

Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector.

Keywords: aggregation, cipher, homomorphic stream, encryption

Procedia PDF Downloads 259
24 Improved Hash Value Based Stream CipherUsing Delayed Feedback with Carry Shift Register

Authors: K. K. Soundra Pandian, Bhupendra Gupta

Abstract:

In the modern era, as the application data’s are massive and complex, it needs to be secured from the adversary attack. In this context, a non-recursive key based integrated spritz stream cipher with the circulant hash function using delayed feedback with carry shift register (d-FCSR) is proposed in this paper. The novelty of this proposed stream cipher algorithm is to engender the improved keystream using d-FCSR. The proposed algorithm is coded using Verilog HDL to produce dynamic binary key stream and implemented on commercially available FPGA device Virtex 5 xc5vlx110t-2ff1136. The implementation of stream cipher using d-FCSR on the FPGA device operates at a maximum frequency of 60.62 MHz. It achieved the data throughput of 492 Mbps and improved in terms of efficiency (throughput/area) compared to existing techniques. This paper also briefs the cryptanalysis of proposed circulant hash value based spritz stream cipher using d-FCSR is against the adversary attack on a hardware platform for the hardware based cryptography applications.

Keywords: cryptography, circulant function, field programmable gated array, hash value, spritz stream cipher

Procedia PDF Downloads 248
23 Model Estimation and Error Level for Okike’s Merged Irregular Transposition Cipher

Authors: Okike Benjamin, Garba E. J. D.

Abstract:

The researcher has developed a new encryption technique known as Merged Irregular Transposition Cipher. In this cipher method of encryption, a message to be encrypted is split into parts and each part encrypted separately. Before the encrypted message is transmitted to the recipient(s), the positions of the split in the encrypted messages could be swapped to ensure more security. This work seeks to develop a model by considering the split number, S and the average number of characters per split, L as the message under consideration is split from 2 through 10. Again, after developing the model, the error level in the model would be determined.

Keywords: merged irregular transposition, error level, model estimation, message splitting

Procedia PDF Downloads 313
22 Maintaining User-Level Security in Short Message Service

Authors: T. Arudchelvam, W. W. E. N. Fernando

Abstract:

Mobile phone has become as an essential thing in our life. Therefore, security is the most important thing to be considered in mobile communication. Short message service is the cheapest way of communication via the mobile phones. Therefore, security is very important in the short message service as well. This paper presents a method to maintain the security at user level. Different types of encryption methods are used to implement the user level security in mobile phones. Caesar cipher, Rail Fence, Vigenere cipher and RSA are used as encryption methods in this work. Caesar cipher and the Rail Fence methods are enhanced and implemented. The beauty in this work is that the user can select the encryption method and the key. Therefore, by changing the encryption method and the key time to time, the user can ensure the security of messages. By this work, while users can safely send/receive messages, they can save their information from unauthorised and unwanted people in their own mobile phone as well.

Keywords: SMS, user level security, encryption, decryption, short message service, mobile communication

Procedia PDF Downloads 395
21 Symmetric Key Encryption Algorithm Using Indian Traditional Musical Scale for Information Security

Authors: Aishwarya Talapuru, Sri Silpa Padmanabhuni, B. Jyoshna

Abstract:

Cryptography helps in preventing threats to information security by providing various algorithms. This study introduces a new symmetric key encryption algorithm for information security which is linked with the "raagas" which means Indian traditional scale and pattern of music notes. This algorithm takes the plain text as input and starts its encryption process. The algorithm then randomly selects a raaga from the list of raagas that is assumed to be present with both sender and the receiver. The plain text is associated with the thus selected raaga and an intermediate cipher-text is formed as the algorithm converts the plain text characters into other characters, depending upon the rules of the algorithm. This intermediate code or cipher text is arranged in various patterns in three different rounds of encryption performed. The total number of rounds in the algorithm is equal to the multiples of 3. To be more specific, the outcome or output of the sequence of first three rounds is again passed as the input to this sequence of rounds recursively, till the total number of rounds of encryption is performed. The raaga selected by the algorithm and the number of rounds performed will be specified at an arbitrary location in the key, in addition to important information regarding the rounds of encryption, embedded in the key which is known by the sender and interpreted only by the receiver, thereby making the algorithm hack proof. The key can be constructed of any number of bits without any restriction to the size. A software application is also developed to demonstrate this process of encryption, which dynamically takes the plain text as input and readily generates the cipher text as output. Therefore, this algorithm stands as one of the strongest tools for information security.

Keywords: cipher text, cryptography, plaintext, raaga

Procedia PDF Downloads 289
20 Pattern in Splitting Sequence in Okike’s Merged Irregular Transposition Cipher for Encrypting Cyberspace Messages

Authors: Okike Benjamin, E. J. D. Garba

Abstract:

The protection of sensitive information against unauthorized access or fraudulent changes has been of prime concern throughout the centuries. Modern communication techniques, using computers connected through networks, make all data even more vulnerable to these threats. The researchers in this work propose a new encryption technique to be known as Merged Irregular Transposition Cipher. In this proposed encryption technique, a message to be encrypted will first of all be split into multiple parts depending on the length of the message. After the split, different keywords are chosen to encrypt different parts of the message. After encrypting all parts of the message, the positions of the encrypted message could be swapped to other position thereby making it very difficult to decrypt by any unauthorized user.

Keywords: information security, message splitting, pattern, sequence

Procedia PDF Downloads 286
19 11-Round Impossible Differential Attack on Midori64

Authors: Zhan Chen, Wenquan Bi

Abstract:

This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 275
18 Improved Impossible Differential Cryptanalysis of Midori64

Authors: Zhan Chen, Wenquan Bi, Xiaoyun Wang

Abstract:

The Midori family of light weight block cipher is proposed in ASIACRYPT2015. It has attracted the attention of numerous cryptanalysts. There are two versions of Midori: Midori64 which takes a 64-bit block size and Midori128 the size of which is 128-bit. In this paper an improved 10-round impossible differential attack on Midori64 is proposed. Pre-whitening keys are considered in this attack. A better impossible differential path is used to reduce time complexity by decreasing the number of key bits guessed. A hash table is built in the pre-computation phase to reduce computational complexity. Partial abort technique is used in the key seiving phase. The attack requires 259 chosen plaintexts, 214.58 blocks of memory and 268.83 10-round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 347
17 A Method and System for Secure Authentication Using One Time QR Code

Authors: Divyans Mahansaria

Abstract:

User authentication is an important security measure for protecting confidential data and systems. However, the vulnerability while authenticating into a system has significantly increased. Thus, necessary mechanisms must be deployed during the process of authenticating a user to safeguard him/her from the vulnerable attacks. The proposed solution implements a novel authentication mechanism to counter various forms of security breach attacks including phishing, Trojan horse, replay, key logging, Asterisk logging, shoulder surfing, brute force search and others. QR code (Quick Response Code) is a type of matrix barcode or two-dimensional barcode that can be used for storing URLs, text, images and other information. In the proposed solution, during each new authentication request, a QR code is dynamically generated and presented to the user. A piece of generic information is mapped to plurality of elements and stored within the QR code. The mapping of generic information with plurality of elements, randomizes in each new login, and thus the QR code generated for each new authentication request is for one-time use only. In order to authenticate into the system, the user needs to decode the QR code using any QR code decoding software. The QR code decoding software needs to be installed on handheld mobile devices such as smartphones, personal digital assistant (PDA), etc. On decoding the QR code, the user will be presented a mapping between the generic piece of information and plurality of elements using which the user needs to derive cipher secret information corresponding to his/her actual password. Now, in place of the actual password, the user will use this cipher secret information to authenticate into the system. The authentication terminal will receive the cipher secret information and use a validation engine that will decipher the cipher secret information. If the entered secret information is correct, the user will be provided access to the system. Usability study has been carried out on the proposed solution, and the new authentication mechanism was found to be easy to learn and adapt. Mathematical analysis of the time taken to carry out brute force attack on the proposed solution has been carried out. The result of mathematical analysis showed that the solution is almost completely resistant to brute force attack. Today’s standard methods for authentication are subject to a wide variety of software, hardware, and human attacks. The proposed scheme can be very useful in controlling the various types of authentication related attacks especially in a networked computer environment where the use of username and password for authentication is common.

Keywords: authentication, QR code, cipher / decipher text, one time password, secret information

Procedia PDF Downloads 267
16 Constructing White-Box Implementations Based on Threshold Shares and Composite Fields

Authors: Tingting Lin, Manfred von Willich, Dafu Lou, Phil Eisen

Abstract:

A white-box implementation of a cryptographic algorithm is a software implementation intended to resist extraction of the secret key by an adversary. To date, most of the white-box techniques are used to protect block cipher implementations. However, a large proportion of the white-box implementations are proven to be vulnerable to affine equivalence attacks and other algebraic attacks, as well as differential computation analysis (DCA). In this paper, we identify a class of block ciphers for which we propose a method of constructing white-box implementations. Our method is based on threshold implementations and operations in composite fields. The resulting implementations consist of lookup tables and few exclusive OR operations. All intermediate values (inputs and outputs of the lookup tables) are masked. The threshold implementation makes the distribution of the masked values uniform and independent of the original inputs, and the operations in composite fields reduce the size of the lookup tables. The white-box implementations can provide resistance against algebraic attacks and DCA-like attacks.

Keywords: white-box, block cipher, composite field, threshold implementation

Procedia PDF Downloads 167
15 Evolutionary Methods in Cryptography

Authors: Wafa Slaibi Alsharafat

Abstract:

Genetic algorithms (GA) are random algorithms as random numbers that are generated during the operation of the algorithm determine what happens. This means that if GA is applied twice to optimize exactly the same problem it might produces two different answers. In this project, we propose an evolutionary algorithm and Genetic Algorithm (GA) to be implemented in symmetric encryption and decryption. Here, user's message and user secret information (key) which represent plain text to be transferred into cipher text.

Keywords: GA, encryption, decryption, crossover

Procedia PDF Downloads 445
14 Round Addition DFA on Lightweight Block Ciphers with On-The-Fly Key Schedule

Authors: Hideki Yoshikawa, Masahiro Kaminaga, Arimitsu Shikoda, Toshinori Suzuki

Abstract:

Round addition differential fault analysis (DFA) using operation bypassing for lightweight block ciphers with on-the-fly key schedule is presented. For 64-bit KLEIN and 64-bit LED, it is shown that only a pair of correct ciphertext and faulty ciphertext can derive the secret master key. For PRESENT, one correct ciphertext and two faulty ciphertexts are required to reconstruct the secret key.

Keywords: differential fault analysis (DFA), round addition, block cipher, on-the-fly key schedule

Procedia PDF Downloads 702
13 Security Analysis and Implementation of Achterbahn-128 for Images Encryption

Authors: Aissa Belmeguenai, Oulaya Berrak, Khaled Mansouri

Abstract:

In this work, efficiency implementation and security evaluation of the keystream generator of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written with MATLAB.7.5. First of all, two different original images are used to validate the proposed design. The developed program is used to transform the original images data into digital image file. Finally, the proposed program is implemented to encrypt and decrypt images data. Several tests are done to prove the design performance, including visual tests and security evaluation.

Keywords: Achterbahn-128, keystream generator, stream cipher, image encryption, security analysis

Procedia PDF Downloads 313
12 Implementation of Achterbahn-128 for Images Encryption and Decryption

Authors: Aissa Belmeguenai, Khaled Mansouri

Abstract:

In this work, an efficient implementation of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written by MATLAB.7.5. At first two different original images are used for validate the proposed design. Then our developed program was used to transform the original images data into image digits file. Finally, we used our implemented program to encrypt and decrypt images data. Several tests are done for proving the design performance including visual tests and security analysis; we discuss the security analysis of the proposed image encryption scheme including some important ones like key sensitivity analysis, key space analysis, and statistical attacks.

Keywords: Achterbahn-128, stream cipher, image encryption, security analysis

Procedia PDF Downloads 531
11 Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive

Authors: Swapan Maiti, Dipanwita Roy Chowdhury

Abstract:

Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack.

Keywords: cellular automata, maximum period nonlinear CA, Meier and Staffelbach attack, nonlinear functions

Procedia PDF Downloads 312
10 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 506
9 Main Chaos-Based Image Encryption Algorithm

Authors: Ibtissem Talbi

Abstract:

During the last decade, a variety of chaos-based cryptosystems have been investigated. Most of them are based on the structure of Fridrich, which is based on the traditional confusion-diffusion architecture proposed by Shannon. Compared with traditional cryptosystems (DES, 3DES, AES, etc.), the chaos-based cryptosystems are more flexible, more modular and easier to be implemented, which make them suitable for large scale-data encyption, such as images and videos. The heart of any chaos-based cryptosystem is the chaotic generator and so, a part of the efficiency (robustness, speed) of the system depends greatly on it. In this talk, we give an overview of the state of the art of chaos-based block ciphers and we describe some of our schemes already proposed. Also we will focus on the essential characteristics of the digital chaotic generator, The needed performance of a chaos-based block cipher in terms of security level and speed of calculus depends on the considered application. There is a compromise between the security and the speed of the calculation. The security of these block block ciphers will be analyzed.

Keywords: chaos-based cryptosystems, chaotic generator, security analysis, structure of Fridrich

Procedia PDF Downloads 684
8 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo

Abstract:

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Keywords: arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s encoding

Procedia PDF Downloads 204
7 On Dynamic Chaotic S-BOX Based Advanced Encryption Standard Algorithm for Image Encryption

Authors: Ajish Sreedharan

Abstract:

Security in transmission and storage of digital images has its importance in today’s image communications and confidential video conferencing. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. Advanced Encryption Standard (AES) is a well known block cipher that has several advantages in data encryption. However, it is not suitable for real-time applications. This paper presents modifications to the Advanced Encryption Standard to reflect a high level security and better image encryption. The modifications are done by adjusting the ShiftRow Transformation and using On Dynamic chaotic S-BOX. In AES the Substitute bytes, Shift row and Mix columns by themselves would provide no security because they do not use the key. In Dynamic chaotic S-BOX Based AES the Substitute bytes provide security because the S-Box is constructed from the key. Experimental results verify and prove that the proposed modification to image cryptosystem is highly secure from the cryptographic viewpoint. The results also prove that with a comparison to original AES encryption algorithm the modified algorithm gives better encryption results in terms of security against statistical attacks.

Keywords: advanced encryption standard (AES), on dynamic chaotic S-BOX, image encryption, security analysis, ShiftRow transformation

Procedia PDF Downloads 435
6 A Real-World Roadmap and Exploration of Quantum Computers Capacity to Trivialise Internet Security

Authors: James Andrew Fitzjohn

Abstract:

This paper intends to discuss and explore the practical aspects of cracking encrypted messages with quantum computers. The theory of this process has been shown and well described both in academic papers and headline-grabbing news articles, but with all theory and hyperbole, we must be careful to assess the practicalities of these claims. Therefore, we will use real-world devices and proof of concept code to prove or disprove the notion that quantum computers will render the encryption technologies used by many websites unfit for purpose. It is time to discuss and implement the practical aspects of the process as many advances in quantum computing hardware/software have recently been made. This paper will set expectations regarding the useful lifespan of RSA and cipher lengths and propose alternative encryption technologies. We will set out comprehensive roadmaps describing when and how encryption schemes can be used, including when they can no longer be trusted. The cost will also be factored into our investigation; for example, it would make little financial sense to spend millions of dollars on a quantum computer to factor a private key in seconds when a commodity GPU could perform the same task in hours. It is hoped that the real-world results depicted in this paper will help influence the owners of websites who can take appropriate actions to improve the security of their provisions.

Keywords: quantum computing, encryption, RSA, roadmap, real world

Procedia PDF Downloads 130
5 Statistical Randomness Testing of Some Second Round Candidate Algorithms of CAESAR Competition

Authors: Fatih Sulak, Betül A. Özdemir, Beyza Bozdemir

Abstract:

In order to improve symmetric key research, several competitions had been arranged by organizations like National Institute of Standards and Technology (NIST) and International Association for Cryptologic Research (IACR). In recent years, the importance of authenticated encryption has rapidly increased because of the necessity of simultaneously enabling integrity, confidentiality and authenticity. Therefore, at January 2013, IACR announced the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR Competition) which will select secure and efficient algorithms for authenticated encryption. Cryptographic algorithms are anticipated to behave like random mappings; hence, it is important to apply statistical randomness tests to the outputs of the algorithms. In this work, the statistical randomness tests in the NIST Test Suite and the other recently designed randomness tests are applied to six second round algorithms of the CAESAR Competition. It is observed that AEGIS achieves randomness after 3 rounds, Ascon permutation function achieves randomness after 1 round, Joltik encryption function achieves randomness after 9 rounds, Morus state update function achieves randomness after 3 rounds, Pi-cipher achieves randomness after 1 round, and Tiaoxin achieves randomness after 1 round.

Keywords: authenticated encryption, CAESAR competition, NIST test suite, statistical randomness tests

Procedia PDF Downloads 315
4 An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic

Authors: Diogen Babuc

Abstract:

The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. Methods: The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigenère. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e., shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b+1, it’ll return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Results: Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character isn’t used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it’s questionable if it works better than the other methods from the point of view of execution time and storage space.

Keywords: ciphering, deciphering, authentic, algorithm, polyalphabetic cipher, random key, methods comparison

Procedia PDF Downloads 102