Search results for: B chromosome
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 104

Search results for: B chromosome

74 Identification of Quantitative Trait Loci Conferring Downy Mildew Resistance in Cucumis sativus

Authors: Pawinee Innark, Hudsaya Punyanitikul, Chanuluk Khanobdee, Chatchawan Jantasuriyarat, Sompid Samipak

Abstract:

One of the most devastating diseases in cucumber is downy mildew caused by the fungus Pseudoperonospora cubensis. To enable the use of marker-assisted breeding for resistance cultivars, sixty six microsatellite markers were used to map (quantitative trait loci) QTLs for DM resistance. Total of 315 F2 population from the cross between DM-resistant inbred line CSL0067 and susceptible CSL0139 were evaluated for downy mildew resistance in cotyledon, first and second true leaf at 7, 10, and 14 day after inoculation. The QTL analysis revealed that the downy mildew resistant genes were controlled by multiple recessive genes. From eight linkage groups (LG 1.1, 1.2, 2, 3, 4, 5.1, 5.2 and 6), fourteen QTL positions were detected on 4 linkage groups (LG 1.1, 2, 5.1 and 6) with the log of odd scores ranged from 3.538 to 9.165. Among them, Cot7_5.1_2 and Cot10_5.1 had major-effect QTL with the R2 values of 10.9 and 12.5%, respectively. The flanking markers for Cot7_5.1_2 were SSR19172 - SSR07531 markers and for Cot10_5.1 were SSR03943 - SSR00772. Besides QTLs on chromosome 1, 5 and 6 that were previously reported, this study also revealed a QTL for DM resistance on chromosome 2 that can be used as a new source in cucumber breeding program.

Keywords: cucumber, DNA marker, downy mildew, QTL

Procedia PDF Downloads 219
73 Isolation and Expansion of Human Periosteum-Derived Mesenchymal Stem Cells in Defined Serum-Free Culture Medium

Authors: Ainur Mukhambetova, Miras Karzhauov, Vyacheslav Ogay

Abstract:

Introduction: Mesenchymal stem cells (MSCs) have the capacity to be differentiated into several cell lineages and are a promising source for cell therapy and tissue engineering. However, currently most MSCs culturing protocols use media supplemented with fetal bovine serum (FBS), which limits their application in clinic due to the possibility of zoonotic infections, contamination and immunological reactions. Consequently, formulating effective serum free culture medium becomes one of the important problems in contemporary cell biotechnology. Objectives: The aim of this study was to define an optimal serum-free medium for culturing of periosteum derived MSCs. Materials and methods: The MSCs were extracted from human periosteum and transferred to the culture flasks pretreated with CELLstart™. Immunophenotypic characterization, proliferation and in vitro differentiation of cells grown on STEM PRO® MSC SFM were compared to the cells cultured in the standard FBS containing media. Chromosome analysis and flow cytometry were also performed. Results: We have shown that cells were grown on STEM PRO® MSC SFM retained all the morphological, immunophenotypic (CD73, CD90, CD105, vimentin and Stro-1) and cell differentiation characteristics specific to MSCs. Chromosome analysis indicated no anomalies in the chromosome structure. Flow cytometry showed a high expression of cell adhesion molecules CD44 (98,8%), CD90 (97,4%), CD105 (99,1%). In addition, we have shown that cell is grown on STEM PRO® MSC SFM have higher proliferation capacity compared to cell expanded on standard FBS containing the medium. Conclusion: We have shown that STEM PRO® MSC SFM is optimal for culturing periosteum derived human MSCs which subsequently can be safely used in cell therapy.

Keywords: cell technologies, periosteum-derived MSCs, regenerative medicine, serum-free medium

Procedia PDF Downloads 273
72 Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization

Authors: Jose Manuel Rodriguez-Dominguez, Rodrigo Barba-Gonzalez, Ernesto Tapia-Campos

Abstract:

Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work.

Keywords: Amaryllidaceae, cytogenetics, ornamental, ploidy level

Procedia PDF Downloads 167
71 Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives

Authors: Lakshmi Rao Kandukuri, Mamata Deenadayal, Suma Prasad, Bipin Sethi, Srinadh Buragadda, Lalji Singh

Abstract:

Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases.

Keywords: India, chromosome abnormalities, genetic disorders, cytogenetic study

Procedia PDF Downloads 280
70 A Report of 5-Months-Old Baby with Balanced Chromosomal Rearrangements along with Phenotypic Abnormalities

Authors: Mohit Kumar, Beklashwar Salona, Shiv Murti, Mukesh Singh

Abstract:

We report here a case of five-months old male baby, born as second child of non-consanguineous parents with no considerable history of genetic abnormality which was referred to our cytogenetic laboratory for chromosomal analysis. Physical dysmorphic facial features including mongoloid face, cleft palate, simian crease, and developmental delay were observed. We present this case with unique balanced autosomal translocation of t(3;10)(p21;p13). The risk of phenotypic abnormalities based on de novo balanced translocation was estimated to be 7%. The association of balanced chromosomal rearrangement with Down syndrome features such as multiple congenital anomalies, facial dysmorphism and congenital heart anomalies are very rare in a 5-months old male child. Trisomy-21 is not uncommon in chromosomal abnormality with the birth defect and balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion (RSA). Two ml heparinized peripheral blood cells cultured in RPMI-1640 for 72 hours supplemented with 20% fetal bovine serum, phytohemagglutinin (PHA), and antibiotics were used for chromosomal analysis. A total 30 metaphases images were captured using Olympus-BX51 microscope and analyzed using Bio-view karyotyping software through GTG-banding (G bands by trypsin and Giemsa) according to International System for Human Cytogenetic Nomenclature 2016. The results showed balanced translocation between short arm of chromosome # 3 and short arm of chromosome # 10. The karyotype of the child was found to be 46,XY,t(3;10)(p21; p13). Chromosomal abnormalities are one of the major causes of birth defect in new born babies. Also, balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion. The index case presented with dysmorphic facial features and had a balanced translocation 46,XY,t(3;10)(p21;p13). This translocation with break points at (p21; p13) has not been reported in the literature in a child with facial dysmorphism. To the best of our knowledge, this is the first report of novel balanced translocation t(3;10) with break points in a child with dysmorphic features. We found balanced chromosomal translocation instead of any trisomy or unbalanced aberrations along with some phenotypic abnormalities. Therefore, we suggest that such novel balanced translocation with abnormal phenotype should be reported in order to enable the pathologist, pediatrician, and gynecologist to have a better insight into the intricacies of chromosomal abnormalities and their associated phenotypic features. We hypothesized that dysmorphic features as seen in this case may be the result of change in the pattern of genes located at the breakpoint area in balanced translocations or may be due to deletion or mutation of genes located on the p-arm of chromosome # 3 and p-arm of chromosome # 10.

Keywords: balanced translocation, karyotyping, phenotypic abnormalities, facial dimorphisms

Procedia PDF Downloads 177
69 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: chromosomes, cropping, genetic algorithm, genes

Procedia PDF Downloads 400
68 Mechanisms and Regulation of the Bi-directional Motility of Mitotic Kinesin Nano-motors

Authors: Larisa Gheber

Abstract:

Mitosis is an essential process by which duplicated genetic information is transmitted from mother to daughter cells. Incorrect chromosome segregation during mitosis can lead to genetic diseases, chromosome instability and cancer. This process is mediated by a dynamic microtubule-based intracellular structure, the mitotic spindle. One of the major factors that govern the mitotic spindle dynamics are the kinesin-5 biological nano motors that were believed to move unidirectionally on the microtubule filaments, using ATP hydrolysis, thus performing essential functions in mitotic spindle dynamics. Surprisingly, several reports from our and other laboratories have demonstrated that some kinesin-5 motors are bi-directional: they move in minus-end direction on the microtubules as single-molecules and can switch directionality under a number of conditions. These findings broke a twenty-five-years old dogma regarding kinesin directionality (1, 2). The mechanism of this bi-directional motility and its physiological significance remain unclear. To address this unresolved problem, we apply an interdisciplinary approach combining live cell imaging, biophysical single molecule, and structural experiments to examine the activity of these motors and their mutated variants in vivo and in vitro. Our data shows that factors such as protein phosphorylation (3, 4), motor clustering on the microtubules (5, 6) and structural elements (7, 8) regulate the bi-directional motility of kinesin motors. We also show, using Cryo-EM, that bi-directional kinesin motors obtain non-canonical microtubule binding, which is essential to their special motile properties and intracellular functions. We will discuss the implication of these findings to mechanism bi-directional motility and physiological roles in mitosis.

Keywords: mitosis, cancer, kinesin, microtubules, biochemistry, biophysics

Procedia PDF Downloads 44
67 Frequency of BCR-ABL Fusion Transcript Types with Chronic Myeloid Leukemia by Multiplex Polymerase Chain Reaction in Srinagarind Hospital, Khon Kaen Thailand

Authors: Kanokon Chaicom, Chitima Sirijerachai, Kanchana Chansung, Pinsuda Klangsang, Boonpeng Palaeng, Prajuab Chaimanee, Pimjai Ananta

Abstract:

Chronic myeloid leukemia (CML) is characterized by the consistent involvement of the Philadelphia chromosome (Ph), which is derived from a reciprocal translocation between chromosome 9 and 22, the main product of the t(9;22) (q34;q11) translocation, is found in the leukemic clone of at least 95% of CML patients. There are two major forms of the BCR/ABL fusion gene, involving ABL exon 2, but including different exons of BCR gene. The transcripts b2a2 (e13a2) or b3a2 (e14a2) code for a p210 protein. Another fusion gene leads to the expression of an e1a2 transcript, which codes for a p190 protein. Other less common fusion genes are b3a3 or b2a3, which codes for a p203 protein and e19a2 (c3a2) transcript, which codes for a p230 protein. Its frequency varies in different populations. In this study, we aimed to report the frequency of BCR-ABL fusion transcript types with CML by multiplex PCR (polymerase chain reaction) in Srinagarind Hospital, Khon Kaen, Thailand. Multiplex PCR for BCR-ABL was performed on 58 patients, to detect different types of BCR-ABL transcripts of the t (9; 22). All patients examined were positive for some type of BCR/ABL rearrangement. The majority of the patients (93.10%) expressed one of the p210 BCR-ABL transcripts, b3a2 and b2a2 transcripts were detected in 53.45% and 39.65% respectively. The expression of an e1a2 transcript showed 3.75%. Co-expression of p210/p230 was detected in 3.45%. Co-expression of p210/p190 was not detected. Multiplex PCR is useful, saves time and reliable in the detection of BCR-ABL transcript types. The frequency of one or other rearrangement in CML varies in different population.

Keywords: chronic myeloid leukemia, BCR-ABL fusion transcript types, multiplex PCR, frequency of BCR-ABL fusion

Procedia PDF Downloads 209
66 Genetic Algorithm to Construct and Enumerate 4×4 Pan-Magic Squares

Authors: Younis R. Elhaddad, Mohamed A. Alshaari

Abstract:

Since 2700 B.C the problem of constructing magic squares attracts many researchers. Magic squares one of most difficult challenges for mathematicians. In this work, we describe how to construct and enumerate Pan- magic squares using genetic algorithm, using new chromosome encoding technique. The results were promising within reasonable time.

Keywords: genetic algorithm, magic square, pan-magic square, computational intelligence

Procedia PDF Downloads 532
65 Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology

Authors: Julia Gontar, Natalia Buderatskaya, Igor Ilyin, Olga Parnitskaya, Sergey Lavrynenko, Eduard Kapustin, Ekaterina Ilyina, Yana Lakhno

Abstract:

Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease.

Keywords: donor oocyte cytoplasmic transfer, embryos’ chromosome set, oocyte spindle transfer, pronuclear transfer

Procedia PDF Downloads 297
64 Phylogenetic Relationships between the Whole Sets of Individual Flow Sorted U, M, S and C Chromosomes of Aegilops and Wheat as Revealed by COS Markers

Authors: András Farkas, István Molnár, Jan Vrána, Veronika Burešová, Petr Cápal, András Cseh, Márta Molnár-Láng, Jaroslav Doležel

Abstract:

Species of Aegilops played a central role in the evolution of wheat and are sources of traits related to yield quality and tolerance against biotic and abiotic stresses. These wild genes and alleles are desirable to use in crop improvement programs via introgressive hybridization. However, the success of chromosome mediated gene transfer to wheat are hampered by the pour knowledge on the genome structure of Aegilops relative to wheat and by the low number of cost-effective molecular markers specific for Aegilops chromosomes. The COS markers specific for genes conserved throughout evolution in both sequence and copy number between Triticeae/Aegilops taxa and define orthologous regions, thus enabling the comparison of regions on the chromosomes of related species. The present study compared individual chromosomes of Aegilops umbellulata (UU), Ae. comosa (MM), Ae. speltoides (SS) and Ae. caudata (CC) purified by flourescent labelling with oligonucleotid SSR repeats and biparametric flow cytometry with wheat by identifying orthologous chromosomal regions by COS markers. The linear order of bin-mapped COS markers along the wheat D chromosomes was identified by the use of chromosome-specific sequence data and virtual gene order. Syntenic regions of wheat identifying genome rearrangements differentiating the U, M, S or C genomes from the D genome of wheat were detected. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species and wheat will facilitate the targeted development of new markers specific for U, M, S and C genomic regions and will contribute to the understanding of molecular processes related to the evolution of Aegilops.

Keywords: Aegilops, cos-markers, flow-sorting, wheat

Procedia PDF Downloads 468
63 Integrations of Students' Learning Achievements and Their Analytical Thinking Abilities with the Problem-Based Learning and the Concept Mapping Instructional Methods on Gene and Chromosome Issue at the 12th Grade Level

Authors: Waraporn Thaimit, Yuwadee Insamran, Natchanok Jansawang

Abstract:

Focusing on Analytical Thinking and Learning Achievement are the critical component of visual thinking that gives one the ability to solve problems quickly and effectively that allows to complex problems into components, and the result had been achieved or acquired form of the subject students of which resulted in changes within the individual as a result of activity in learning. The aims of this study are to administer on comparisons between students’ analytical thinking abilities and their learning achievements sample size consisted of 80 students who sat at the 12th grade level in 2 classes from Chaturaphak Phiman Ratchadaphisek School, the 40-student experimental group with the Problem-Based Learning (PBL) and 40-student controlling group with the Concept Mapping Instructional (CMI) methods were designed. Research instruments composed with the 5-lesson instructional plans to be assessed with the pretest and posttest techniques on each instructional method. Students’ responses of their analytical thinking abilities were assessed with the Analytical Thinking Tests and students’ learning achievements were tested of the Learning Achievement Tests. Statistically significant differences with the paired t-test and F-test (Two-way MANCOVA) between post- and pre-tests of the whole students in two chemistry classes were found. Associations between student learning outcomes in each instructional method and their analytical thinking abilities to their learning achievements also were found (ρ < .05). The use of two instructional methods for this study is revealed that the students perceive their abilities to be highly learning achievement in chemistry classes with the PBL group ought to higher than the CMI group. Suggestions that analytical thinking ability involves the process of gathering relevant information and identifying key issues related to the learning achievement information.

Keywords: comparisons, students learning achievements, analytical thinking abilities, the problem-based learning method, the concept mapping instructional method, gene and chromosome issue, chemistry classes

Procedia PDF Downloads 237
62 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean

Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe

Abstract:

Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.

Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering

Procedia PDF Downloads 184
61 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels

Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik

Abstract:

Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.

Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.

Procedia PDF Downloads 200
60 Genome Analyses of Pseudomonas Fluorescens b29b from Coastal Kerala

Authors: Wael Ali Mohammed Hadi

Abstract:

Pseudomonas fluorescens B29B, which has asparaginase enzymatic activity, was isolated from the surface coastal seawater of Trivandrum, India. We report the complete Pseudomonas fluorescens B29B genome sequenced, identified, and annotated from a marine source. We find the genome at most minuscule a 7,331,508 bp single circular chromosome with a GC content of 62.19% and 6883 protein-coding genes. Three hundred forty subsystems were identified, including two predicted asparaginases from the genome analysis of P. fluorescens B29B for further investigation. This genome data will help further industrial biotechnology applications of proteins in general and asparaginase as a target.

Keywords: pseudomonas, marine, asparaginases, Kerala, whole-genome

Procedia PDF Downloads 173
59 Genotoxic Effect of Tricyclieandidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice

Authors: Samia A. El-Fiky, F. A. Abou-Zaid, Ibrahim M. Farag, Naira M. Efiky

Abstract:

Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.

Keywords: clomipramine, mice, chromosome aberrations, sperm abnormalities, histopathology

Procedia PDF Downloads 396
58 Genotoxic Effect of Tricyclic Antidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice

Authors: Samia A. El-Fiky, Fouad A. Abou-Zaid, Ibrahim M. Farag, Naira M. El-Fiky

Abstract:

Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.

Keywords: chromosome aberrations, clomipramine, mice, histopathology, sperm abnormalities

Procedia PDF Downloads 496
57 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: chromosome injection, dynamic schema, genetic algorithm, similarity and dissimilarity

Procedia PDF Downloads 313
56 STR and SNP Markers of Y-Chromosome Unveil Similarity between the Gene Pool of Kurds and Yezidis

Authors: M. Chukhryaeva, R. Skhalyakho, J. Kagazegeva, E. Pocheshkhova, L. Yepiskopossyan, O. Balanovsky, E. Balanovska

Abstract:

The Middle East is crossroad of different populations at different times. The Kurds are of particular interest in this region. Historical sources suggested that the origin of the Kurds is associated with Medes. Therefore, it was especially interesting to compare gene pool of Kurds with other supposed descendants of Medes-Tats. Yezidis are ethno confessional group of Kurds. Yezidism as a confessional teaching was formed in the XI-XIII centuries in Iraq. Yezidism has caused reproductively isolation of Yezidis from neighboring populations for centuries. Also, isolation helps to retain Yezidian caste system. It is unknown how the history of Yezidis affected its genу pool because it has never been the object of researching. We have examined the Y-chromosome variation in Yezidis and Kurdish males to understand their gene pool. We collected DNA samples from 90 Yezidi males and 24 Kurdish males together with their pedigrees. We performed Y-STR analysis of 17 loci in the samples collected (Yfiler system from Applied Biosystems) and analysis of 42 Y-SNPs by real-time PCR. We compared our data with published data from other Kurdish groups and from European, Caucasian, and West Asian populations. We found that gene pool of Yezidis contains haplogroups common in the Middle East (J-M172(xM67,M12)- 24%, E-M35(xM78)- 9%) and in South Western Asia (R-M124- 8%) and variant with wide distribution area - R-M198(xM458- 9%). The gene pool of Kurdish has higher genetic diversity than Yezidis. Their dominants haplogroups are R-M198- 20,3 %, E-M35- 9%, J-M172- 9%. Multidimensional scaling also shows that the Kurds and Yezidis are part of the same frontier Asian cluster, which, in addition, included Armenians, Iranians, Turks, and Greeks. At the same time, the peoples of the Caucasus and Europe form isolated clusters that do not overlap with the Asian clusters. It is noteworthy that Kurds from our study gravitate towards Tats, which indicates that most likely these two populations are descendants of ancient Medes population. Multidimensional scaling also reveals similarity between gene pool of Yezidis, Kurds with Armenians and Iranians. The analysis of Yezidis pedigrees and their STR variability did not reveal a reliable connection between genetic diversity and caste system. This indicates that the Yezidis caste system is a social division and not a biological one. Thus, we showed that, despite many years of isolation, the gene pool of Yezidis retained a common layer with the gene pool of Kurds, these populations have common spectrum of haplogroups, but Yezidis have lower genetic diversity than Kurds. This study received primary support from the RSF grant No. 16-36-00122 to MC and grant No. 16-06-00364 to EP.

Keywords: gene pool, haplogroup, Kurds, SNP and STR markers, Yezidis

Procedia PDF Downloads 173
55 Monoallelic and Biallelic Deletions of 13q14 in a Group of 36 CLL Patients Investigated by CGH Haematological Cancer and SNP Array (8x60K)

Authors: B. Grygalewicz, R. Woroniecka, J. Rygier, K. Borkowska, A. Labak, B. Nowakowska, B. Pienkowska-Grela

Abstract:

Introduction: Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. Hemizygous and or homozygous loss at 13q14 occur in more than half of cases and constitute the most frequent chromosomal abnormality in CLL. It is believed that deletions 13q14 play a role in CLL pathogenesis. Two microRNA genes miR-15a and miR- 16-1 are targets of 13q14 deletions and plays a tumor suppressor role by targeting antiapoptotic BCL2 gene. Deletion size, as a single change detected in FISH analysis, has haprognostic significance. Patients with small deletions, without RB1 gene involvement, have the best prognosis and the longest overall survival time (OS 133 months). In patients with bigger deletion region, containing RB1 gene, prognosis drops to intermediate, like in patients with normal karyotype and without changes in FISH with overall survival 111 months. Aim: Precise delineation of 13q14 deletions regions in two groups of CLL patients, with mono- and biallelic deletions and qualifications of their prognostic significance. Methods: Detection of 13q14 deletions was performed by FISH analysis with CLL probe panel (D13S319, LAMP1, TP53, ATM, CEP-12). Accurate deletion size detection was performed by CGH Haematological Cancer and SNP array (8x60K). Results: Our investigated group of CLL patients with the 13q14 deletion, detected by FISH analysis, comprised two groups: 18 patients with monoallelic deletions and 18 patients with biallelic deletions. In FISH analysis, in the monoallelic group the range of cells with deletion, was 43% to 97%, while in biallelic group deletion was detected in 11% to 94% of cells. Microarray analysis revealed precise deletion regions. In the monoallelic group, the range of size was 348,12 Kb to 34,82 Mb, with median deletion size 7,93 Mb. In biallelic group discrepancy of total deletions, size was 135,27 Kb to 33,33 Mb, with median deletion size 2,52 Mb. The median size of smaller deletion regions on one copy chromosome 13 was 1,08 Mb while the average region of bigger deletion on the second chromosome 13 was 4,04 Mb. In the monoallelic group, in 8/18 deletion region covered RB1 gene. In the biallelic group, in 4/18 cases, revealed deletion on one copy of biallelic deletion and in 2/18 showed deletion of RB1 gene on both deleted 13q14 regions. All minimal deleted regions included miR-15a and miR-16-1 genes. Genetic results will be correlated with clinical data. Conclusions: Application of CGH microarrays technique in CLL allows accurately delineate the size of 13q14 deletion regions, what have a prognostic value. All deleted regions included miR15a and miR-16-1, what confirms the essential role of these genes in CLL pathogenesis. In our investigated groups of CLL patients with mono- and biallelic 13q14 deletions, patients with biallelic deletion presented smaller deletion sizes (2,52 Mb vs 7,93 Mb), what is connected with better prognosis.

Keywords: CLL, deletion 13q14, CGH microarrays, SNP array

Procedia PDF Downloads 233
54 Joubert Syndrome: A Rare Genetic Disorder Reported in Kurdish Family

Authors: Aran Abd Al Rahman

Abstract:

Joubert syndrome regards as a congenital cerebellar ataxia caused by autosomal recessive carried on X chromosome. The disease diagnosed by brain imaging—the so-called molar tooth sign. Neurological signs were present from the neonatal period and include hypotonia progressing to ataxia, global developmental delay, ocular motor apraxia, and breathing dysregulation. These signs are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton, and liver. 30 causative genes have been identified so far, all of which encode for proteins of the primary cilium or its apparatus, The purpose of our project was to detect the mutant gene (INPP5E gene) which cause Joubert syndrome. There were many methods used for diagnosis such as MRI and CT- scan and molecular diagnosis by doing ARMS PCR for detection of mutant gene that we were used in this research project. In this research for individual family which reported, the two children with parents, the two children were affected and were carrier.

Keywords: Joubert syndrome, genetic disease, Kurdistan region, Sulaimani

Procedia PDF Downloads 108
53 Genomic Analysis of Whole Genome Sequencing of Leishmania Major

Authors: Fatimazahrae Elbakri, Azeddine Ibrahimi, Meryem Lemrani, Dris Belghyti

Abstract:

Leishmaniasis represents a major public health problem because of the number of cases recorded each year and the wide distribution of the disease. It is a parasitic disease of flagellated protozoa transmitted by the bite of certain species of sandfly, causing a spectrum of clinical pathology in humans ranging from disfiguring skin lesions to fatal visceral leishmaniasis. Cutaneous leishmaniasis due to Leishmania major is a polymorphic disease; in fact, the infection can be asymptomatic, localized, or disseminated. The objective of this work is to determine the genomic diversity that contributes to clinical variability by trying to identify the variation in chromosome number and to extract SNPs and SNPs and InDels; it is based on four sequences (WGS) of Leishmania major available on NCBI in Fastq form, from three countries: Tunisia, Algeria, and Israel, the analysis is set up from a pipeline to facilitate the discovery of genetic diversity, in particular SNP and chromosomal somy.

Keywords: Leshmania major, cutaneous Leishmania, NGS, genomic, somy, variant calling

Procedia PDF Downloads 42
52 Exploring Structure of Human Chromosomes Using Fluorescence Lifetime Imaging

Authors: A. Bhartiya, S. Botchway, M. Yusuf, I. Robinson

Abstract:

Chromatin condensation is maintained by DNA-based proteins and some divalent cations (Mg²⁺, Ca²⁺, etc.). Condensation process during cell division maintains structural and functional organizations of chromosomes by transferring genetic information correctly to daughter cells. Fluorescence Lifetime Imaging (FLIM) technique measures the fluorescence decay of fixed human chromosomes by calculating the lifetime of fluorophores at a pixel x of the arrival of each photon as a function of time delay t, following excitation with a laser pulse. Fixed metaphase human chromosomes were labelled with DNA-binding dye, DAPI and later DAPI fluorescence lifetime measured using multiphoton microscopy. 5 out of 23 pairs of human chromosomes shown shorter lifetime at the centromere region, differentiating proportion of compaction along the length of chromosomes. Different lifetime was observed in a condensed and de-condensed chromosome. It clearly indicates the involvement of divalent cations in the process of condensation.

Keywords: divalent cations, FLIM (Fluorescence Lifetime Imaging), human chromosomes, multiphoton microscopy

Procedia PDF Downloads 247
51 Tetraploid Induction in the Yellowtail Tetra Astyanax altiparanae

Authors: Nivaldo Ferreira do Nascimento, Matheus Pereira-Santos, Nycolas Levy-Pereira, José Augusto Senhorini, George Shigueki Yasui, Laura Satiko Okada Nakaghi

Abstract:

Tetraploid individuals, which could produce diploid gametes, can be used for production of 100% triploid fish. Therefore, the aim of this study was to develop a tetraploidization protocol for A. altiparanae. We tested the effect of heat shock (40 °C; 2 min) at 16, 18, 20, 22, 24 and 26 minutes post fertilization (mpf). Untreated eggs were used as control. After hatching, ploidy status of the larvae was checked by flow cytometry. No difference were observed for the hatching rate between all treatments (P = 0.5974). However, we observed an increase in the larval abnormality in the heat shock treatments, in special at 22 (82.17 ± 6.66%) 24 (78.31 ±7.28%) and 26 mpf (79.01 ± 7.85%) in comparison with the control group (12.87 ± 4.46%). No tetraploid was observed at 16 and 18 mpf. The higher number of tetraploid individuals (52/55) was observed at 26 mpf. Our results showed that high percentages of tetraploids are obtained by heat shock (40°C; 2min) at 26 mpf, which could enable the mass production of triploid individuals in A. altiparanae.

Keywords: chromosome manipulation, polyploidy, flow cytometry, tetraploidization

Procedia PDF Downloads 301
50 Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)

Authors: Piyaporn Buaklang, Narisa Kengtrong Bordeerat

Abstract:

The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner.

Keywords: nanoparticles, genotoxicity, human lymphoblast cells (TK6), micronucleus

Procedia PDF Downloads 279
49 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: chromosome, genetic algorithm, subtree, test

Procedia PDF Downloads 296
48 Relationship between Joint Hypermobility and Balance in Patients with Down’s Syndrome

Authors: Meltem Ramoglu, Ertugrul Safran, Hikmet Ucgun, Busra Kepenek Varol, Hulya Nilgun Gurses

Abstract:

Down’s syndrome (DS) is a human genetic disorder caused by the presence of all or part of an extra chromosome 21. Many patients with DS have musculoskeletal problems that affect weak muscle tone (hypotonia) and ligament laxity. This leads to excessive joint hypermobility and decreased position sense (proprioception). Lack of proprioception may cause balance problems. The aim of our study was to investigate how does joint hypermobility affect balance in patients with DS. Our study conducted with 13 DS patients age between 18 to 40 years. Demographic data were recorded. Beighton Hypermobility Score (BHS) was used to evaluate joint hypermobility. Balance score of participants was evaluated with Berg Balance Scale (BBS). Mean age of our participants was 29,8±3,57 year. Average score of body mass index and BHS were; 33,23 ±3,78 kg/m2 and 7,61±1,04, respectively. Out of a maximum possible score of 56 on the Berg Balance Scale, scores of participants with DS ranged from 36–51, with a mean of 43±4,45. Significant correlation was found between BHS and BBS (r: -,966, p=0.00). All of our participants have 6/9 or higher grade from BHS. As a conclusion of our study; joint hypermobility may affect balance score in patients with DS. The results suggest that people with DS have worse balance scores which affected by hypermobility. Further studies need larger population for more reliable results.

Keywords: adults, balance, Down's syndrome, joint hypermobility

Procedia PDF Downloads 300
47 Morphology, Chromosome Numbers and Molecular Evidences of Three New Species of Begonia Section Baryandra (Begoniaceae) from Panay Island, Philippines

Authors: Rosario Rivera Rubite, Ching-I Peng, Che-Wei Lin, Mark Hughes, Yoshiko Kono, Kuo-Fang Chung

Abstract:

The flora of Panay Island is under-collected compared with the other islands of the Philippines. In a joint expedition to the island, botanists from Taiwan and the Philippines found three unknown Begonia and compared them with potentially allied species. The three species are clearly assignable to Begonia section Baryandra which is largely endemic to the Philippines. Studies of literature, herbarium specimens, and living plants support the recognition of the three new species: Begonia culasiensis, Begonia merrilliana, and Begonia sykakiengii. Somatic chromosomes at metaphase were determined to be 2n=30 for B. culasiensis and 2n=28 for both B. merrilliana and B. sykakiengii, which are congruent with those of most species in sect. Baryandra. Molecular phylogenetic evidence is consistent with B. culasiensis being a relict from the late Miocene, and with B. merrilliana and B. sykakiengii being younger species of Pleistocene origin. The continuing discovery of endemic Philippine species means the remaining fragments of both primary and secondary native vegetation in the archipelago are of increasing value in terms of natural capital. A secure future for the species could be realized through ex-situ conservation collections and raising awareness with community groups.

Keywords: conservation, endemic , herbarium , limestone, phylogenetics, taxonomy

Procedia PDF Downloads 193
46 The Genotoxic Effect of Coal Fly Ash of Thermal Power Plant on Raphanus sativus L. (Radish)

Authors: Patel Kailash P, Patel Parimal M

Abstract:

The effect of coal fly ash treatment on the chromosomes of Raphanus sativus L. was investigated. The seeds of Raphanus sativusL. were placed in petri dishes in three replicates and allowed to germinate for five days in different concentration of coal fly ash solution. The root was treated with the diluted, semidiluted, and concentrated solution of fly ash while the control group had distilled water.The total aberration were examined. The mitotic index was calculated and the results were statically evaluated by the analysis of variance 5% significant level. The mitotic index decreased as the concentration increased. The highest mitotic index value was diluted fly ash solution while the least was concentrated fly ash treatment. The results show the most frequent chromosomal abnormalities observed included: chromatid bridge, c-mitosis, and stickiness. Concentrated fly ash solution is much more genotoxic than semidiluted fly ash solution, as it induced more aberrations having percentage abnormalities for the highest concentration tested. Increased fly ash pollution can lead to some irreversible cytogenetic effect in plants. The study is an attempt to corroborate the toxic effect of coal fly ash of thermal power plant on the chromosome of plants. These results will be useful in environmental monitoring of the cytotoxicity of coal fly ash.

Keywords: coal fly-ash, genotoxic, cytogenetic, mitotic index, Raphanus sativus L.

Procedia PDF Downloads 284
45 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein

Authors: Y. Ruchi, A. Prerna, S. Deepshikha

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.

Keywords: ALS, binding site, homology modeling, neuronal degeneration

Procedia PDF Downloads 362