Search results for: (orange light)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3817

Search results for: (orange light)

3697 Lanthanide Incorporated Dendron Based White Light Emitting Material

Authors: Prashant Kumar, Edamana Prasad

Abstract:

The White light emitting material has an emerging field in recent years due to their widespread application in the field of optoelectronics and cellular display. In the present study, we have achieved white light emission in gel medium through partial resonance energy transfer from different donors (naphthalene, phenanthrene, and pyrene) to lanthanides {Eu(III) and Tb(III)}. The gel was formed by the self- assembly of glucose cored poly(aryl ether) dendrons in DMSO-Water mixture (1:9 v/v). The white light emission was further confirmed by the CIE coordinates (Commission Internationale d’ Eclairage). Moreover, we have developed three different white light emitting system by utilizing three different donor moiety namely, naphthalene-Tb(III)-Eu(III) {I}, phenanthrene-Tb(III)-Eu(III) {II}, and pyrene-Tb(III)-Eu(III) {III}. The CIE coordinates for I, II and III were (0.35, 0.37), (0.33, 0.32) and (0.35, 0.33) respectively. Furthermore, we have investigated the energy transfer from different donors (phenanthrene, naphthalene, and pyrene) to lanthanide {Eu(III)}. The efficiency of energy transfer from phenanthrene-Eu(III), naphthalene-Eu(III) and pyrene-Eu(III) systems was 11.9%, 3.9%, and 3.6%, respectively. Detailed mechanistic aspects will be displayed in the poster.

Keywords: dendron, lanthanide, resonance energy transfer, white light emission

Procedia PDF Downloads 306
3696 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 351
3695 Playing Light Switching Games with Langton's Turmite

Authors: Crista Arangala

Abstract:

Light switching games are both popular and well studied. This paper introduces a cellular automata called Langton’s turmite to several different light switching scenarios and discusses when Langton’s turmite can solve these games.

Keywords: cellular automata, lights out, alien tiles, chaos, Langton's Turmite

Procedia PDF Downloads 475
3694 Orange Fleshed Sweet Potato Response to Filter Cake and Macadamia Husk Compost in Two Agro-Ecologies of Kwazulu-Natal, South Africa

Authors: Kayode Fatokun, Nozipho N. Motsa

Abstract:

Field experiments were carried out during the summer/autumn (first trial) and winter/spring (second trial) seasons of 2019 and 2021 inDlangubo, Ngwelezane, and Mtubatubaareas of KwaZulu-Natal Province of South Africa to study the drought amelioration effects and impact of 2 locally available organic wastes [filter cake (FC) and macadamia husk compost (MHC)] on the productivity, and physiological responses of 4 orange-fleshed sweet potato cultivars (Buregard cv., Impilo, W-119 and 199062.1). The effects of FC and MHC were compared with that of inorganic fertilizer (IF) [2:3:2 (30)], FC+IF, MHC+IF, and control. The soil amendments were applied in the first trials only. Climatic data such as humidity, temperature, and rainfall were taken via remote sensing. The results of the first trial indicated that filter cake and IF significantly performed better than MHC. While the strength of filter cake may be attributable to its rich array of mineral nutrients such as calcium, magnesium, potassium, sodium, zinc, copper, manganese, iron, and phosphorus. The little performance from MHC may be attributable to its water holding capacity. Also, a positive correction occurred between the yield of the test OFSP cultivars and climatic factors such as rainfall, NDVI, and NDWI values. Whereas the inorganic fertilizer did not have any significant effect on the growth and productivity of any of the tested sweet potato cultivars in the second trial; FC, and MHC largely maintained their significant performances. In conclusion, the use of FC is highly recommended in the production of the test orange-fleshed sweet potato cultivars. Also, the study indicated that both FC and MHC may not only supply the needed plant nutrients but has the capacity to reduce the impact of drought on the growth of the test cultivars. These findings are of great value to farmers, especially the resource-poorones.

Keywords: amendments, drought, filter cake, macadamia husk compost, sweet potato

Procedia PDF Downloads 61
3693 Visible Light Communication and Challenges

Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil

Abstract:

Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.

Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes

Procedia PDF Downloads 43
3692 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 162
3691 RACK1 Integrates Light and Brassinosteroid Signaling to Coordinate Cell Division During Root Soil Penetration

Authors: Liang Jiansheng, Zhu Wei

Abstract:

Light and brassinosteroids are essential external and internal cues for plant survival. Although the coordination of light with phytohormone signals is crucial for plant growth and development, the molecular connection between light and brassinosteroid signaling during root soil penetration remains elusive. Here, we reveal that light-stabilized RACK1 couples a brassinosteroid signaling cascade to drive cell division in root meristems. RACK1 family scaffold proteins positively regulate light-induced the promotion of root elongation during soil penetration. Under the light condition, RACK1A interacts with both phyB and SPA1, then reinforces the phyB-SPA1 association to accumulate its abundance in roots. In response to brassinosteroid signals, RACK1A competes with BKI1 to attenuate the BRI1-BKI1 interaction, thereby leading to activating BRI1 actions in root development. Furthermore, RACK1A binds to BES1 to repress its DNA binding activity toward the target gene CYCD3;1. This ultimately allows to release the inhibition of CYCD3;1 transcription, and promotes cell division during root growth. Our study illustrates a new mechanistic model of how plants engage scaffold proteins in transducing light information to facilitate brassinosteroid signaling for root growth in the soil.

Keywords: root growth, cell division, light signaling, brassinosteroid signaling, soil penetration, scaffold protein, RACK1

Procedia PDF Downloads 40
3690 Photocatalytic Degradation of Organic Pollutants Using Strontium Titanate Synthesized by Electrospinning Method

Authors: Hui-Hsin Huang, Yi-Feng Lin, Che-Chia Hu

Abstract:

To date, photocatalytic wastewater treatment using solar energy has attracted considerable attention. In this study, strontium titanates with various morphologies, i.e., nanofibers and cubic-like particles, were prepared as photocatalysts using the electrospinning (ES), solid-state (SS), and sol-gel (SG) methods. X-ray diffraction (XRD) analysis showed that ES and SS can be assigned to pure phase SrTiO3, while SG was referred to Sr2TiO4. These samples displayed optical absorption edges at 385-395 nm, indicating they can be activated in UV light irradiation. Scanning electron microscope (SEM) analyses revealed that ES SrTiO3 has a uniform fibrous structure with length and diameter of several microns and 100-200 nm, respectively. After loading of nanoparticulate Ag as a co-catalyst onto the surface of strontium titanates, ES sample exhibited highest photocatalytic activity to degrade methylene orange dye solution in comparison to that of SS and SG ones. These results indicate that Ag-loaded ES SrTiO3, which has a desirable SrTiO3 phase and a facile electron transfer along the preferential direction in fibrous structure, can be a promising photocatalyst.

Keywords: photocatalytic degradation, strontium titanate, electrospinning, co-catalyst

Procedia PDF Downloads 245
3689 Bright Light Effects on the Concentration and Diffuse Attention Reaction Time, Tension, Angry, Fatigue and Alertness among Shift Workers

Authors: Mohammad Imani, JabraeilNasl Seraji, Abolfazl Zakerian

Abstract:

Background: Reaction time is the amount of time it takes to respond to a stimulus. In fact The time that passes between the introduction of a stimulus and the reaction by the subject to that stimulus. The aim of this interventional study is evaluation of bright light effects on concentration and diffuse attention reaction time, tension, angry, fatigue and alertness among shift workers. There are several incentives that can reduce the reaction time or added. Bright light as one of the environmental factors can reduce reaction time. Material &Method: This cross-sectional descriptive study was conducted in 1391, in 88 subjects (44 Fixed morning worker and 44 shift worker ) In a 24 h time (13-16-19-22-1-4-7-10) in an ordinary light situation after a randomly selected sample size calculation, concentration and diffuse attention test (reaction time) has been done. After intervention and using of bright light (4500lux), again reaction time test was done. After analyzing by ElISA method obtained data were analyzed by statistical software SPSS 19 and using T-test and ANOVA statistical analysis. Results: Between average of reaction time tests in ordinary light exposed to fixed morning workers and bright light exposed to shift worker, with 95% CI, (P>%5) there was no significant relationship. After the intervention and the use of bright light (4500 lux),between average of concentration and diffused attention reaction time tests in ordinary light exposure on the fixed morning workers and bright light exposure shift workers with 95% CI, (P<5%) there was significant relationship. Conclusion: In sometimes of 24 h during ordinary light exposure concentration and diffused attention reaction time has changed in shift workers. After intervention, during bright light (4500lux) exposure as a light shower, focused and diffuse attention reaction time, tension ,angry and fatigue decreased.

Keywords: bright light, reaction time, tension, angry, fatigue, alertness

Procedia PDF Downloads 347
3688 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media

Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah

Abstract:

A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.

Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk

Procedia PDF Downloads 311
3687 Evaluation of Genetic Diversity in Iranian Native Silkworm Bombyx mori Using RAPD (Random Amplification of Polymorphic DNA) Molecular Marker

Authors: Rouhollah Radjabi, Mojtaba Zarei, Elham Sanatgar, Hossein Shouhani

Abstract:

RAPD molecular markers in order to discrimination of the Iranian native Bombyx mori silkworm breeds were used. DNA extraction using phenol - chloroform was and the qualitative and quantitative measurements of extracted DNA and its dilution, the obtained bands on agarose gel 1.5 percent were marked and analyzed. Results showed that the bands are observed between 250-2500 bp and most bands have been observed as Gilani-orange, the lowest bands observed are Khorasani-lemon. Primer 3 with 100% polymorphism with the highest polymorphism and primer 2 with 61.5 polymorphism had the lowest percentage of polymorphism. Cluster analysis of races and placed them in three main groups, races Gilani - orange, Baghdad and Khorasani -pink if the first group, camel's thorn, Herati - yellow race was alone in the second group and Khorasani – lemon was alone in the third group. The greatest similarity between the races, between Khorasani- pink and Baghdad (0.64). RAPD markers have been determined different silkworm races based on various morphological or economic characteristics except geographic origin.

Keywords: silkworm, molecular marker, RAPD, Iran

Procedia PDF Downloads 407
3686 Static Light Scattering Method for the Analysis of Raw Cow's Milk

Authors: V. Villa-Cruz, H. Pérez-Ladron de Guevara, J. E. Diaz-Díaz

Abstract:

Static Light Scattering (SLS) was used as a method to analyse cow's milk raw, coming from the town of Lagos de Moreno, Jalisco, Mexico. This method is based on the analysis of the dispersion of light laser produced by a set of particles in solution. Based on the above, raw milk, which contains particles of fat globules, with a diameter of 2000 nm and particles of micelles of protein with 300 nm in diameter were analyzed. For this, dilutions of commercial milk were made (1.0%, 2.0% and 3.3%) to obtain a pattern of laser light scattering and also made measurements of raw cow's milk. Readings were taken in a sweep initial angle 10° to 170°, results were analyzed with the program OriginPro 7. The SLS method gives us an estimate of the percentage of fat content in milk samples. It can be concluded that the SLS method, is a quick method of analysis to detect adulteration in raw cow's milk.

Keywords: light scattering, milk analysis, adulteration in milk, micelles, OriginPro

Procedia PDF Downloads 346
3685 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: communication, LED, Li-Fi, Wi-Fi

Procedia PDF Downloads 316
3684 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems

Authors: Jiradeach Kalayaruan, Tosawat Seetawan

Abstract:

This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.

Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy

Procedia PDF Downloads 311
3683 Quantum Technologies, the Practical Challenges to It, and Ideas to Build an Inclusive Quantum Platform, Shoonya Ecosystem (Zero-Point Energy)

Authors: Partha Pratim Kalita

Abstract:

As sound can be converted to light, light can also be deduced to sound. There are technologies to convert light to sound, but there are not many technologies related to the field where sound can be converted to a distinct vibrational sequence of light. Like the laws under which the principles of sound work, there are principles for the light to become quantum in nature. Thus, as we move from sound to the subtler aspects of light, we are moving from 3D to 5D. Either we will be making technologies of 3D in today’s world, or we will be really interested in making technologies of the 5D, depends on our understanding of how quantum 5D works. Right now, the entire world is talking about quantum, which is about the nature and behavior of subatomic particles, which is 5D. In practice, they are using metals and machines based on atomic structures. If we talk of quantum without taking note of the technologies of 5D and beyond, we will only be reinterpreting relative theories in the name of quantum. This paper, therefore, will explore the possibilities of moving towards quantum in its real essence with the Shoonya ecosystem (zero-point energy). In this context, the author shall highlight certain working models developed by him, which are currently in discussion with the Indian government.

Keywords: quantum mechanics, quantum technologies, healthcare, shoonya ecosystem, energy, human consciousness

Procedia PDF Downloads 162
3682 Teaching Light Polarization by Putting Art and Physics Together

Authors: Fabrizio Logiurato

Abstract:

Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.

Keywords: light polarization, optical activity, multidisciplinary education, science and art

Procedia PDF Downloads 188
3681 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program

Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song

Abstract:

Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory

Procedia PDF Downloads 419
3680 Fabrication of High Energy Hybrid Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

There is great interest to exploit sustainable, low-cost, renewable resources as carbon precursors for energy storage applications. Research on development of energy storage devices has been growing rapidly due to mismatch in power supply and demand from renewable energy sources This paper reported the synthesis of porous activated carbon from biomass waste and evaluated its performance in supercapicators. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited a high BET surface area of 1,901 m2 g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making different hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered a high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg–1. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 6.6 Wh kg-1 and 16.3 Wh kg-1, respectively. The cycling retentions obtained at current density of 1 A g–1 were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments; for instances, the characteristics binding energies appeared at ~283.83, ~284.83, ~286.13, ~288.56, and ~290.70 eV which correspond to sp2 -graphitic C, sp3 -graphitic C, C-O, C=O and π-π*, respectively. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. The findings opened up the possibility of developing high energy LICs from abundant, low-cost, renewable biomass waste.

Keywords: lithium-ion capacitors, orange peel, pre-lithiated graphite, supercapacitors

Procedia PDF Downloads 204
3679 Liturgical Elements and Symbolism of Light in Christian Sacred Space

Authors: Zorana Sokol Gojnik, Igor Gojnik, Marina Simunic Bursic

Abstract:

The light is one of the major themes of theology of sacred space. Christian theology, but also architecture in its complexity, is permeated by the symbolism of light from its beginning. The aim of this paper is to deeply analyse the symbolism of light in every single element of contemporary Christian sacred space such as altar, ambo, baptistery, tabernacle, confessionals, stations of the cross, etc. The research will be carried out using the methodology of research of literature and comparatively observation of contemporary examples of sacred architecture. The research will use the insights of analyzed literature and examples of sacred architecture in order to describe the background of the problem as well as to complement the received results with the reliable scientific findings. The paper will highlight the importance of symbolic and theological points of view in contemporary church design using the light as a building part of every single part of sacred architecture as there is an insight that, in contemporary sacred architecture, there is a lack of understanding of symbolic and theological aspect of light while designing new sacred spaces.

Keywords: architecture, liturgy, sacred architecture, theology of space

Procedia PDF Downloads 159
3678 Rheological and Crystallization Properties of Dark Chocolate Formulated with Essential Oil of Orange and Carotene Extracted from Pineapple Peels

Authors: Mayra Pilamunga, Edwin Vera

Abstract:

The consumption of dark chocolate is beneficial due to its high content of flavonoids, catechins, and procyanidins. To improve its properties, fortification of chocolate with polyphenols, anthocyanins, soy milk powder and other compounds has been evaluated in several studies. However, to our best knowledge, the addition of carotenes to chocolate has not been tested. Carotenoids, especially ß-carotene and lutein, are widely distributed in fruits and vegetables so that they could be extracted from agro-industrial waste, such as fruit processing. On the other hand, limonene produces crystalline changes of cocoa butter and improves its consistency and viscosity. This study aimed to evaluate the production of dark chocolate with the addition of carotenes extracted from an agro industrial waste and to improve its rheological properties and crystallization, with orange essential oil. The dried and fermented cocoa beans were purchased in Puerto Quito, Ecuador, and had a fat content of 51%. Six types of chocolates were formulated, and two formulations were chosen, one at 65% cocoa and other at 70% cocoa, both with a solid: fat ratio of 1.4:1. With the formulations selected, the influence of the addition of 0.75% and 1.5% orange essential oil was evaluated, and analysis to measure the viscosity, crystallization and sensory analysis were done. It was found that essential oil does not generate significant changes in the properties of chocolate, but has an important effect on aroma and coloration, which changed from auburn to brown. The best scores on sensory analysis were obtained for the samples formulated with 0.75% essential oil. Prior to the formulation with carotenes, the extraction of these compounds from pineapple peels were performed. The process was done with and without a previous enzymatic treatment, with three solid-solvent ratios. The best treatment was using enzymes in a solids-solvent ratio of 1:12.5; the extract obtained under these conditions had 4.503 ± 0.214 μg Eq. β-carotene/mL. This extract was encapsulated with gum arabic and maltodextrin, and the solution was dried using a freeze dryer. The encapsulated carotenes were added to the chocolate in an amount of 1.7% however 60,8 % of them were lost in the final product.

Keywords: cocoa, fat crystallization, limonene, carotenoids, pineapple peels

Procedia PDF Downloads 133
3677 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire

Authors: Odile Amoncou, Djedje-Kossu Zahui

Abstract:

The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.

Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications

Procedia PDF Downloads 54
3676 Efficiently Silicon Metasurfaces at Visible Light

Authors: Juntao Li

Abstract:

The metasurfaces for beam deflecting with gradient silicon posts in the square lattices were fabricated on the thin film crystal silicon with quartz substrate. By using the crystals silicon with high refractive index and high transmission to control the phase over 2π coverage, we demonstrated the polarization independent beam deflecting at wavelength of 532nm with 45% transmission in experiment and 70% in simulation into the desired angle. This simulation efficiency is almost close to the TiO2 metasurfaces but has higher refractive index and lower aspect ratio to reduce fabrication complexity. The result can extend the application of silicon metalsurfaces from 700 nm to 500 nm hence open a new way to use metasurfaces efficiently in visible light regime.

Keywords: metasurfaces, crystal silicon, light deflection, visible light

Procedia PDF Downloads 256
3675 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins

Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.

Keywords: light olefins, OX-ZEO, Syngas, ZnCrOₓ

Procedia PDF Downloads 153
3674 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye

Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi

Abstract:

Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.

Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles

Procedia PDF Downloads 135
3673 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst

Authors: Meichen Lee, Michael K. H. Leung

Abstract:

In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.

Keywords: microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis

Procedia PDF Downloads 430
3672 Natural Dyeing of Textile Cotton Fabric and Its Characterization

Authors: Rabia Almas

Abstract:

Today’s world is demanding natural and biological colorants on priority bases as an alternative to toxic and unsustainable synthetic dyes. Sustainable natural colors from plants and/or living organisms such as bacteria's and fungi attracted the world research scholars and textile industries recently due to the excitement and opportunities they covered. So, in the present study, natural colors from food waste, such as orange peels and peanuts, were extracted and applied to cotton fabric. The dyeing recipes were optimized in terms of dye concentration, processing temperature and time for higher color strength. The characterization of the dyes and fabric, such as Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and fastness properties were measured for the identification of the chemical groups involved for a better understanding of the dyeing behavior. The results revealed that proper mordanting and concentration of dye on cotton fabric could give high color strength and good fastness to wash and light and these natural dyes can be used as an alternative to synthetic toxic colorants.

Keywords: textile, textile dyes, natural dyes, bio colors

Procedia PDF Downloads 54
3671 Transcriptomic Analyses of Kappaphycus alvarezii under Different Wavelengths of Light

Authors: Vun Yee Thien, Kenneth Francis Rodrigues, Clemente Michael Vui Ling Wong, Wilson Thau Lym Yong

Abstract:

Transcriptomes associated with the process of photosynthesis have offered insights into the mechanism of gene regulation in terrestrial plants; however, limited information is available as far as macroalgae are concerned. This investigation aims to decipher the underlying mechanisms associated with photosynthesis in the red alga, Kappaphycus alvarezii, by performing a differential expression analysis on a de novo assembled transcriptomes. Comparative analysis of gene expression was designed to examine the alteration of light qualities and its effect on physiological mechanisms in the red alga. High-throughput paired-end RNA-sequencing was applied to profile the transcriptome of K. alvarezii irradiated with different wavelengths of light (blue 492-455 nm, green 577-492 nm and red 780-622 nm) as compared to the full light spectrum, resulted in more than 60 million reads individually and assembled using Trinity and SOAPdenovo-Trans. The transcripts were annotated in the NCBI non-redundant (nr) protein, SwissProt, KEGG and COG databases with a cutoff E-value of 1e-5 and nearly 30% of transcripts were assigned to functional annotation by Blast searches. Differential expression analysis was performed using edgeR. The DEGs were designated to six categories: BL (blue light) regulated, GL (green light) regulated, RL (red light) regulated, BL or GL regulated, BL or RL regulated, GL or RL regulated, and either BL, GL or RL regulated. These DEGs were mapped to terms in KEGG database and compared with the whole transcriptome background to search for genes that regulated by light quality. The outcomes of this study will enhance our understanding of molecular mechanisms underlying light-induced responses in red algae.

Keywords: de novo transcriptome sequencing, differential gene expression, Kappaphycus alvareziired, red alga

Procedia PDF Downloads 489
3670 Light Weight Mortars Produced from Recycled Foam

Authors: Siwat Kamonkunanon

Abstract:

This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials.

Keywords: light weight, mortars, recycled foam, civil engineering

Procedia PDF Downloads 281
3669 Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye

Authors: B. Benalioua, I. Benyamina, M. Mansour, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, doping

Procedia PDF Downloads 384
3668 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli

Abstract:

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Keywords: adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell

Procedia PDF Downloads 346