Search results for: real estate prediction
4331 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path
Procedia PDF Downloads 4144330 Diagnostic Performance of Tumor Associated Trypsin Inhibitor in Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus
Authors: Aml M. El-Sharkawy, Hossam M. Darwesh
Abstract:
Abstract— Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between tumor associated trypsin inhibitor (TATI) and HCC progression, we aimed to develop a novel score based on combination of TATI and routine laboratory tests for early prediction of HCC. Methods: TATI was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-TATI score) = 3.1 (numerical constant) + 0.09 ×AFP (U L-1) + 0.067 × TATI (ng ml-1) + 0.16 × INR – 1.17 × Albumin (g l-1) – 0.032 × Platelet count × 109 l-1 was developed. HCC-TATI score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 6.5 (ie less than 6.5 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-TATI score could replace AFP in HCC screening and follow up of cirrhotic patients.Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, TATI
Procedia PDF Downloads 3374329 Numerical and Experimental Analysis of Rotor Dynamic Stability
Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, A. Bouderba, H. Kebir
Abstract:
The study of the rotor dynamic in transient system allowed to determine the vibratory responses due to various excitations. This work presents a coupled gyroscopic effect in the defects of a rotor under dynamic loading. Calculations of different energies and virtual work from the various elements of the rotor are developed. To treat real systems a model of finite element was developed. This model of the rotor makes it possible to extract the frequencies and modal deformed, and to calculate the stresses in the critical zone. The study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances, crack and various excitations.Keywords: rotor, defect, finite element, numerical
Procedia PDF Downloads 4604328 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 4184327 A Flexible Pareto Distribution Using α-Power Transformation
Authors: Shumaila Ehtisham
Abstract:
In Statistical Distribution Theory, considering an additional parameter to classical distributions is a usual practice. In this study, a new distribution referred to as α-Power Pareto distribution is introduced by including an extra parameter. Several properties of the proposed distribution including explicit expressions for the moment generating function, mode, quantiles, entropies and order statistics are obtained. Unknown parameters have been estimated by using maximum likelihood estimation technique. Two real datasets have been considered to examine the usefulness of the proposed distribution. It has been observed that α-Power Pareto distribution outperforms while compared to different variants of Pareto distribution on the basis of model selection criteria.Keywords: α-power transformation, maximum likelihood estimation, moment generating function, Pareto distribution
Procedia PDF Downloads 2154326 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System
Authors: A. S. Walkey, N. P. Patidar
Abstract:
It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices
Procedia PDF Downloads 5064325 Flow Characterization in Complex Terrain for Aviation Safety
Authors: Adil Rasheed, Mandar Tabib
Abstract:
The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system
Procedia PDF Downloads 4164324 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability
Procedia PDF Downloads 2504323 Exploring the Influence of Normative, Financial and Environmental Decision Frames in Nudging 'Green' Behaviour, and Increasing Uptake of Energy-Efficient Technologies
Authors: Rebecca Hafner, Daniel Read, David Elmes
Abstract:
The persuasive potential of normative and feedback (financial vs. environmental) information in ‘nudging’ people towards making environmentally sound decisions was explored in a hypothetical choice experiment. The research was specifically focused on determining how subtle variations in the decision frame could be used to increase the selection of energy efficient vs. standard technologies, using the context of home heating choice. Participants were given a choice of a standard heating system (a gas boiler) and a relatively more-energy efficient option (a heat pump). The experiment had a 2 (normative vs. no normative information) by 3 feedback type (financial, environmental, none) design. The last group constituted the control. Half of the participants were given normative information about what the majority of others in their neighbourhood had opted to do when faced with the same choice set, prior to making their decision. The other half received no such information. Varying feedback frames were incorporated by providing participants with information on either financial or environmental savings that could be achieved by choosing the heat pump. No such information was provided in the control group. A significant interaction was found between normative information and feedback frame type. Specifically, the impact of feedback frames was found to be reduced when normative information was provided; illustrating the overriding influence of normative information on option preference. Participants were significantly more likely to select the heat pump if they were vs. were not given normative information. Yet when no normative information was provided, the persuasive influence of the financial frame was increased – highlighting this as an effective means of encouraging uptake of new technologies in this instance. Conversely, the environmental frame was not found to differ significantly from the control. Marginal carryover effects were also found for stated future real-life decision-making behaviour, with participants who were versus were not given normative information being marginally more likely to state they would consider installing a heat pump when they next need to replace their heating system in real life. We conclude that normative and financial feedback framing techniques are highly effective in increasing uptake of new, energy efficient heating technologies involving significant upfront financial outlay. The implications for researchers looking to promote ‘green’ choice in the context of new technology adoption are discussed.Keywords: energy-efficient technology adoption, environmental decision making, financial vs. environmental feedback framing techniques, social norms
Procedia PDF Downloads 3084322 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment
Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello
Abstract:
For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.Keywords: electromagnetic stirring, induction heating, interface modeling, metal load
Procedia PDF Downloads 2674321 A Proposal for Systematic Mapping Study of Software Security Testing, Verification and Validation
Authors: Adriano Bessa Albuquerque, Francisco Jose Barreto Nunes
Abstract:
Software vulnerabilities are increasing and not only impact services and processes availability as well as information confidentiality, integrity and privacy, but also cause changes that interfere in the development process. Security test could be a solution to reduce vulnerabilities. However, the variety of test techniques with the lack of real case studies of applying tests focusing on software development life cycle compromise its effective use. This paper offers an overview of how a Systematic Mapping Study (MS) about security verification, validation and test (VVT) was performed, besides presenting general results about this study.Keywords: software test, software security verification validation and test, security test institutionalization, systematic mapping study
Procedia PDF Downloads 4094320 Thermophysical Properties and Kinetic Study of Dioscorea bulbifera
Authors: Emmanuel Chinagorom Nwadike, Joseph Tagbo Nwabanne, Matthew Ndubuisi Abonyi, Onyemazu Andrew Azaka
Abstract:
This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991.Keywords: aerial yam, finite element, convective, effective, diffusivity
Procedia PDF Downloads 1534319 An Exploratory Study on the Effect of a Fermented Dairy Product on Self-Reported Gut Complaints in US Recreational Athletes
Authors: Kersch-Counet C., Fransen K. H. S., Broyd M., Nyakayiru J. D. O. A., Schoemaker M. H., Mallee L. F., Bovee-Oudenhoven I. M. J.
Abstract:
Background: Around one third of people, including athletes, suffer from feelings of gut discomfort. Fermentation of dairy is a process that has been associated with products that can improve gut health. However, insight in (potential) health benefits of most fermented foods is limited to chemical analyses and in-vitro models. Objective: The aim of this open-label, single-arm explorative trial was to investigate in a real life setting the effect of consumption of a fermented whey product for 3 weeks on self-perceived physical and mental wellbeing and digestive issues in 150 US recreational athletes (20-50 years of age) with self-reported gut complaints at enrolment. Methods: Participants living at the West-Coast of the US received for 3 weeks a daily powder of 15 g of BiotisTM Fermentis to be mixed in water using a supplied shaker. Weekly questionnaires were conducted by MMR research to study the effect on physical/mental health issues and self-perceived gut complaints. Non-parametric tests (e.g., Friedman test) were used to assess statistical differences over time while the Kruskal-Wallis and Wilcoxon signed-rank tests were used for sub-groups analysis. Results: Bloating, stress and anxiety were the top 3 issues of the US recreational athletes. Satisfaction of physical wellbeing increased significantly throughout the 3-weeks of fermented whey product consumption (p<0.0005). Combined digestive issues decreased significantly after 2- and 3-weeks of product consumption, with bloating showing a significant reduction (p<0.05). There was a trend that self-reported stress levels reduced after 3 weeks and participants said to significantly feel more active, energetic, and vital (p<0.05). Subgroup analysis showed that gender and habitual protein supplement consumption were associated with specific health issues and modulated the response to the fermented dairy product. Conclusion: Daily consumption of the fermented BiotisTM Fermentis product is associated with a reduction in self-perceived gastrointestinal symptoms and improved overall wellbeing and mood state in US recreational athletes. This large nutrition and health consumer study brings valuable insights in self-reported gut complaints of recreational athletes in the US and their response to a fermented dairy product. A controlled clinical trial in a targeted population is recommended to scientifically substantiate the product effect as observed in this explorative study.Keywords: real-life study, digestive health, fermented whey, sports
Procedia PDF Downloads 2694318 Remote Wireless Communications Lab in Real Time
Authors: El Miloudi Djelloul
Abstract:
Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”.Keywords: remote access, remote laboratory, wireless telecommunications, external antenna-switching controller board (EASCB)
Procedia PDF Downloads 5154317 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases
Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim
Abstract:
This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.Keywords: Carbon monoxide, Efficiency, Emissions, Gas Turbine, Nox, UHC
Procedia PDF Downloads 4364316 Identification of Rainfall Trends in Qatar
Authors: Abdullah Al Mamoon, Ataur Rahman
Abstract:
Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar
Procedia PDF Downloads 5624315 The Role of Technology in Transforming the Finance, Banking, and Insurance Sectors
Authors: Farid Fahami
Abstract:
This article explores the transformative role of technology in the finance, banking, and insurance sectors. It examines key technological trends such as AI, blockchain, data analytics, and digital platforms and their impact on operations, customer experiences, and business models. The article highlights the benefits of technology adoption, including improved efficiency, cost reduction, enhanced customer experiences, and expanded financial inclusion. It also addresses challenges like cybersecurity, data privacy, and the need for upskilling. Real-world case studies demonstrate successful technology integration, and recommendations for stakeholders emphasize embracing innovation and collaboration. The article concludes by emphasizing the importance of technology in shaping the future of these sectors.Keywords: banking, finance, insurance, technology
Procedia PDF Downloads 724314 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation
Procedia PDF Downloads 2454313 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay
Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers
Abstract:
The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations
Procedia PDF Downloads 2254312 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools
Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad
Abstract:
Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.Keywords: EDM, cyrogenic, TWR, MRR
Procedia PDF Downloads 4564311 Models of Innovation Processes and Their Evolution: A Literature Review
Authors: Maier Dorin, Maier Andreea
Abstract:
Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common (and correct) understanding of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. This article highlights and analyzes a series of models of innovation processes and their evolution. The models analyzed encompass both the strategic level and the operational one within an organization, indicating performance innovation on each landing. As the literature review shows, there are no easy answers to the innovation process as there are no shortcuts to great results. Successful companies do not have a silver innovative bullet - they do not get results by making one or few things better than others, they make everything better.Keywords: innovation, innovation process, business success, models of innovation
Procedia PDF Downloads 4014310 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 204309 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.Keywords: tag cloud, font distribution algorithm, frequency-based, content-based, power law
Procedia PDF Downloads 5054308 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment
Authors: Zahra Hamedani
Abstract:
Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability
Procedia PDF Downloads 4104307 Incorporating Cultural Assets in Yucatec Maya Mathematics Classrooms.
Authors: Felicia Darling
Abstract:
In Yucatec Maya middle schools in the Yucatán, mathematics scores are low and high school dropout rates are high. While addressing larger social and economic causes is crucial, improving mathematics instruction is a feasible approach. This paper draws from a six-month ethnographic, mixed-method study documenting two cultural approaches to problem solving. It explores the extent to which middle school mathematics instruction capitalizes upon these cultural assets and pilots two real-life mathematics tasks that incorporate them. Findings add details to the school/community culture gap around mathematics knowledge and have implications for mathematics education for marginalized students in México and the US.Keywords: math education, indigenous, Maya, cultural assets, secondary school, teacher education
Procedia PDF Downloads 174306 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4044305 Design of a Drift Assist Control System Applied to Remote Control Car
Authors: Sheng-Tse Wu, Wu-Sung Yao
Abstract:
In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics
Procedia PDF Downloads 3974304 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling
Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos
Abstract:
Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood
Procedia PDF Downloads 704303 Angular-Coordinate Driven Radial Tree Drawing
Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov
Abstract:
We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.Keywords: Radial drawing, Visualization, Algorithm, Use of node-link diagrams
Procedia PDF Downloads 3384302 Rescheduling of Manufacturing Flow Shop under Different Types of Disruption
Authors: M. Ndeley
Abstract:
Now our days, Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimize the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand; and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.Keywords: flow shop scheduling, uncertainty, rescheduling, stability
Procedia PDF Downloads 440