Search results for: mechanical behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9288

Search results for: mechanical behavior

6378 Conservation Agriculture in North America

Authors: Ying Chen

Abstract:

Conservation Agriculture in a sustainable way of farming, as it brings many benefits, such as preventing soil from erosion and degradation, improving soil health, conserving energy, and sequestrating carbon. However, adoption of conservation agriculture has been progressing slowly in some part of the world due to some challenges. Among them, seeding in heavy crop residue is challenging, especially in corn production systems. Weed control is also challenging in conservation agriculture. This research aimed to investigate some technologies that can address these challenges. For crop residue management, vertical tillage and vertical seeding have been studied in multiple research projects. Results showed that vertical tillage and seeding were able to deal with crop residue through cutting residue into small segments, which would not plug seeder in the sub-sequent seeding. Vertical tillage is a conservation tillage system, as it leaves more than 30% crop residue on soil surface while incorporating some residue into the shallow soil layer for fast residue decomposition. For weed control, mechanical weeding can reduce chemical inputs in crop production. A tine weeder was studied for weed control during the early growing season of several field crops (corn, soybean, flax, and pea). Detail results of these studies will be shared at the conference.

Keywords: tillage, seeding, mechanical weeding, crop residue

Procedia PDF Downloads 60
6377 Numerical and Experimental Investigation of a Mechanical System with a Pendulum

Authors: Andrzej Mitura, Krzysztof Kecik, Michal Augustyniak

Abstract:

This paper presents a numerical and experimental research of a nonlinear two degrees of freedom system. The tested system consists of a mechanical oscillator (the primary subsystem) with the attached pendulum (the secondary subsystem). The oscillator is suspended on a linear (or nonlinear) coil spring and a nonlinear magnetorheorogical damper and it is excited kinematically. Added pendulum can be used to reduce vibration of a primary subsystem or to energy harvesting. The numerical and experimental investigations showed that the pendulum can perform several types of motion, for example: chaotic motion, constant position in lower or upper (stable inverted pendulum), rotation, symmetrical or asymmetrical swinging vibrations. The main objective of this study is to determine an influence of system parameters for increasing the zone when the pendulum rotates. As a final effect a semi-active control method to change the pendulum solution on the rotation is proposed. To the implementation of this method the magnetorheorogical damper is applied. Continuous rotation of the pendulum is desirable for recovery of energy. The work is financed by Grant no. 0234/IP2/2011/71 from the Polish Ministry of Science and Higher Education in years 2012-2014.

Keywords: autoparametric vibrations, chaos and rotation control, magnetorheological damper

Procedia PDF Downloads 363
6376 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads

Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh

Abstract:

Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.

Keywords: aluminum foam, loading complexity, characterization, biaxial loading

Procedia PDF Downloads 122
6375 Examining Three Psychosocial Factors of Tax Compliance in Self-Employed Individuals using the Mindspace Framework - Evidence from Australia and Pakistan

Authors: Amna Tariq Shah

Abstract:

Amid the pandemic, the contemporary landscape has experienced accelerated growth in small business activities and an expanding digital marketplace, further exacerbating the issue of non-compliance among self-employed individuals through aggressive tax planning and evasion. This research seeks to address these challenges by developing strategic tax policies that promote voluntary compliance and improve taxpayer facilitation. The study employs the innovative MINDSPACE framework to examine three psychosocial factors—tax communication, tax literacy, and shaming—to optimize policy responses, address administrative shortcomings, and ensure adequate revenue collection for public goods and services. Preliminary findings suggest that incomprehensible communication from tax authorities drives individuals to seek alternative, potentially biased sources of tax information, thereby exacerbating non-compliance. Furthermore, the study reveals low tax literacy among Australian and Pakistani respondents, with many struggling to navigate complex tax processes and comprehend tax laws. Consequently, policy recommendations include simplifying tax return filing and enhancing pre-populated tax returns. In terms of shaming, the research indicates that Australians, being an individualistic society, may not respond well to shaming techniques due to privacy concerns. In contrast, Pakistanis, as a collectivistic society, may be more receptive to naming and shaming approaches. The study employs a mixed-method approach, utilizing interviews and surveys to analyze the issue in both jurisdictions. The use of mixed methods allows for a more comprehensive understanding of tax compliance behavior, combining the depth of qualitative insights with the generalizability of quantitative data, ultimately leading to more robust and well-informed policy recommendations. By examining evidence from opposite jurisdictions, namely a developed country (Australia) and a developing country (Pakistan), the study's applicability is enhanced, providing perspectives from two disparate contexts that offer insights from opposite ends of the economic, cultural, and social spectra. The non-comparative case study methodology offers valuable insights into human behavior, which can be applied to other jurisdictions as well. The application of the MINDSPACE framework in this research is particularly significant, as it introduces a novel approach to tax compliance behavior analysis. By integrating insights from behavioral economics, the framework enables a comprehensive understanding of the psychological and social factors influencing taxpayer decision-making, facilitating the development of targeted and effective policy interventions. This research carries substantial importance as it addresses critical challenges in tax compliance and administration, with far-reaching implications for revenue collection and the provision of public goods and services. By investigating the psychosocial factors that influence taxpayer behavior and utilizing the MINDSPACE framework, the study contributes invaluable insights to the field of tax policy. These insights can inform policymakers and tax administrators in developing more effective tax policies that enhance taxpayer facilitation, address administrative obstacles, promote a more equitable and efficient tax system, and foster voluntary compliance, ultimately strengthening the financial foundation of governments and communities.

Keywords: individual tax compliance behavior, psychosocial factors, tax non-compliance, tax policy

Procedia PDF Downloads 62
6374 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 98
6373 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 120
6372 Investigations of Flame Retardant Properties of Beneficiated Huntite and Hydromagnesite Mineral Reinforced Polymer Composites

Authors: H. Yilmaz Atay

Abstract:

Huntite and hydromagnesite minerals have been used as additive materials to achieve incombustible material due to their inflammability property. Those fire retardants materials can help to extinguish in the early stages of fire. Thus dispersion of the flame can be prevented even if the fire started. Huntite and hydromagnesite minerals are known to impart fire-proofing of the polymer composites. However, the additives used in the applications led to deterioration in the mechanical properties due to the usage of high amount of the powders in the composites. In this study, by enriching huntite and hydromagnesite, it was aimed to use purer minerals to reinforce the polymer composites. Thus, predictably, using purer mineral will lead to use lower amount of mineral powders. By this manner, the minerals free from impurities by various processes were added to the polymer matrix with different loading level and grades. Different types of samples were manufactured, and subsequently characterized by XRD, SEM-EDS, XRF and flame-retardant tests. Tensile strength and elongation at break values were determined according to loading levels and grades. Besides, a comparison on the properties of the polymer composites produced by using of minerals with and without impurities was performed. As a result of the work, it was concluded that it is required to use beneficiated minerals to provide better fire-proofing behaviors in the polymer composites.

Keywords: flame retardant, huntite and hydromagnesite, mechanical property, polymer composites

Procedia PDF Downloads 227
6371 The Efficacy of Clobazam for Landau-Kleffner Syndrome

Authors: Nino Gogatishvili, Davit Kvernadze, Giorgi Japharidze

Abstract:

Background and aims: Landau Kleffner syndrome (LKS) is a rare disorder with epileptic seizures and acquired aphasia. It usually starts in initially healthy children. The first symptoms are language regression and behavioral disturbances, and the sleep EEG reveals abnormal epileptiform activity. The aim was to discuss the efficacy of Clobazam for Landau Kleffner syndrome. Case report: We report a case of an 11-year-old boy with an uneventful pregnancy and delivery. He began to walk at 11 months and speak with simple phrases at the age of 2,5 years. At the age of 18 months, he had febrile convulsions; at the age of 5 years, the parents noticed language regression, stuttering, and serious behavioral dysfunction, including hyperactivity, temper outbursts. The epileptic seizure was not noticed. MRI was without any abnormality. Neuropsychological testing revealed verbal auditory agnosia. Sleep EEG showed abundant left fronto-temporal spikes, reaching over 85% during non-rapid eye movement sleep (non-REM sleep). Treatment was started with Clobazam. After ten weeks, EEG was improved. Stuttering and behavior also improved. Results: Since the start of Clobazam treatment, stuttering and behavior improved. Now, he is 11 years old, without antiseizure medication. Sleep EEG shows fronto-temporal spikes on the left side, over 10-49 % of non-REM sleep, bioccipital spikes, and slow-wave discharges and spike-waves. Conclusions: This case provides further support for the efficacy of Clobazam in patients with LKS.

Keywords: Landau-Kleffner syndrome, antiseizure medication, stuttering, aphasia

Procedia PDF Downloads 55
6370 Thermochromic Behavior of Fluoran-Based Mixtures Containing Liquid-Crystalline 4-n-Alkylbenzoic Acids as Color Developers

Authors: Magdalena Wilk-Kozubek, Jakub Pawłów, Maciej Czajkowski, Maria Zdończyk, Katarzyna Ślepokura, Joanna Cybińska

Abstract:

Thermochromic materials belong to the family of intelligent materials that change their color in response to temperature changes; this ability is called thermochromism. Thermochromic behavior can be displayed by both isolated compounds and multicomponent mixtures. Fluoran leuco dye-based mixtures are well-known thermochromic systems used, for example, in heat-sensitive FAX paper. Weak acids often serve as color developers for such systems. As the temperature increases, the acids melt, and the mixtures become colored. The objective of this research is to determine the influence of acids showing a liquid crystalline nematic phase on the development of the fluoran dye. For this purpose, fluoran-based mixtures with 4-n-alkylbenzoic acids were prepared. The mixtures are colored at room temperature, but they become colorless upon the melting of the acids. The melting of acids is associated not only with a change in the color of the mixtures but also with a change in their emission color. Phase transitions were investigated by temperature-dependent powder X-ray diffraction and differential scanning calorimetry; nematic phases were visualized by polarized optical microscopy, and color and emission changes were studied by UV-Vis diffuse reflectance and photoluminescence spectroscopies, respectively. When 4-n-alkylbenzoic acids are used as color developers, the fluoran-based mixtures become colorless after the melting of the acids. This is because the melting of acids is accompanied by the transition from the crystalline phase to the nematic phase, in which the molecular arrangement of the acids does not allow the fluoran dye to be developed.

Keywords: color developer, leuco dye, liquid crystal, thermochromism

Procedia PDF Downloads 86
6369 A Slip Transmission through Alpha/Beta Boundaries in a Titanium Alloy (Ti-6Al-4V)

Authors: Rayan B. M. Ameen, Ian P. Jones, Yu Lung Chiu

Abstract:

Single alpha-beta colony micro-pillars have been manufactured from a polycrystalline commercial Ti-6Al-4V sample using Focused Ion Beam (FIB). Each pillar contained two alpha lamellae separated by a thin fillet of beta phase. A nano-indenter was then used to conduct uniaxial micro-compression tests on Ti alloy single crystals, using a diamond flat tip as a compression platen. By controlling the crystal orientation along the micro-pillar using Electron back scattering diffraction (EBSD) different slip systems have been selectively activated. The advantage of the micro-compression method over conventional mechanical testing techniques is the ability to localize a single crystal volume which is characterizable after deformation. By matching the stress-strain relations resulting from micro-compression experiments to TEM (Transmission Electron Microscopy) studies of slip transmission mechanisms through the α-β interfaces, some proper constitutive material parameters such as the role of these interfaces in determining yield, strain-hardening behaviour, initial dislocation density and the critical resolved shear stress are suggested.

Keywords: α/β-Ti alloy, focused ion beam, micro-mechanical test, nano-indentation, transmission electron diffraction, plastic flow

Procedia PDF Downloads 367
6368 Systems Approach on Thermal Analysis of an Automatic Transmission

Authors: Sinsze Koo, Benjin Luo, Matthew Henry

Abstract:

In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.

Keywords: thermal management, automatic transmission, hybrid, and systematic approach

Procedia PDF Downloads 366
6367 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 308
6366 Approach for the Mathematical Calculation of the Damping Factor of Railway Bridges with Ballasted Track

Authors: Andreas Stollwitzer, Lara Bettinelli, Josef Fink

Abstract:

The expansion of the high-speed rail network over the past decades has resulted in new challenges for engineers, including traffic-induced resonance vibrations of railway bridges. Excessive resonance-induced speed-dependent accelerations of railway bridges during high-speed traffic can lead to negative consequences such as fatigue symptoms, distortion of the track, destabilisation of the ballast bed, and potentially even derailment. A realistic prognosis of bridge vibrations during high-speed traffic must not only rely on the right choice of an adequate calculation model for both bridge and train but first and foremost on the use of dynamic model parameters which reflect reality appropriately. However, comparisons between measured and calculated bridge vibrations are often characterised by considerable discrepancies, whereas dynamic calculations overestimate the actual responses and therefore lead to uneconomical results. This gap between measurement and calculation constitutes a complex research issue and can be traced to several causes. One major cause is found in the dynamic properties of the ballasted track, more specifically in the persisting, substantial uncertainties regarding the consideration of the ballasted track (mechanical model and input parameters) in dynamic calculations. Furthermore, the discrepancy is particularly pronounced concerning the damping values of the bridge, as conservative values have to be used in the calculations due to normative specifications and lack of knowledge. By using a large-scale test facility, the analysis of the dynamic behaviour of ballasted track has been a major research topic at the Institute of Structural Engineering/Steel Construction at TU Wien in recent years. This highly specialised test facility is designed for isolated research of the ballasted track's dynamic stiffness and damping properties – independent of the bearing structure. Several mechanical models for the ballasted track consisting of one or more continuous spring-damper elements were developed based on the knowledge gained. These mechanical models can subsequently be integrated into bridge models for dynamic calculations. Furthermore, based on measurements at the test facility, model-dependent stiffness and damping parameters were determined for these mechanical models. As a result, realistic mechanical models of the railway bridge with different levels of detail and sufficiently precise characteristic values are available for bridge engineers. Besides that, this contribution also presents another practical application of such a bridge model: Based on the bridge model, determination equations for the damping factor (as Lehr's damping factor) can be derived. This approach constitutes a first-time method that makes the damping factor of a railway bridge calculable. A comparison of this mathematical approach with measured dynamic parameters of existing railway bridges illustrates, on the one hand, the apparent deviation between normatively prescribed and in-situ measured damping factors. On the other hand, it is also shown that a new approach, which makes it possible to calculate the damping factor, provides results that are close to reality and thus raises potentials for minimising the discrepancy between measurement and calculation.

Keywords: ballasted track, bridge dynamics, damping, model design, railway bridges

Procedia PDF Downloads 154
6365 A Preliminary Study of Local Customers' Perception towards the Image of the Spa and Their Intention to Visit

Authors: Felsy J. Sandi

Abstract:

There is a potential of growth in the spa industry due to the influx of domestic and international tourist coming to Sabah, Malaysia. It is a good opportunity to venture into this industry for the country’s economic future growth, and therefore, it is essential for this area to be researched. Being one of the fastest growing industries in the world, has led to enormous challenges, which need to be addressed. Malaysia is also riding with this phenomenon. The President of the Malaysian Association of Wellness and Spa stated that the misconception about the Spa industry’s image, especially amongst the elderly is the biggest challenge faced by the industry, as they perceived the spa industry is equivalent to a prostitution center. Therefore, the objective of this study is to explore the issue by analyzing whether image can be added in the theory of planned behavior to better understand the consumer’s intention to visit, in the spa context. The Theory of Planned Behavior by Ajzen, a theory or model in predicting intention, has three constructs; such as Attitude as the first construct, the second construct is Subjective Norm and the third construct is Perceived Behavioral Control. Qualitative research is used as this is an exploratory research. The site of study will be at Jari Jari Spa, located in Kota Kinabalu, the only spa in Sabah that was awarded as the Center of Excellence (CoE) by the Ministry of Tourism and Culture in Malaysia. The findings propose to provide useful information to the relevant stakeholders on ways to approach local customers to convince them to visit the spa and for spa marketers to help them develop and design effective marketing strategies. Future investigation should consider more on the perception and loyalty of the local customers.

Keywords: consumer's perception, image, local customer, spa, visit intention

Procedia PDF Downloads 255
6364 Strategic Thinking to Change Behavior and Improve Sanitation in Jodipan and Kesatrian, Malang, East Java, Indonesia

Authors: Prasanti Widyasih Sarli, Prayatni Soewondo

Abstract:

Greater access to sanitation in developing countries is urgent. However even though sanitation is crucial, overall budget for sanitation is limited. With this budget limitation, it is important to (1) allocate resources strategically to maximize impact and (2) take into account communal agency to potentially be a source for sanitation improvements. The Jodipan and Kesatrian Project in Malang, Indonesia is an interesting alternative for solving the sanitation problem in which resources were allocated strategically and communal agency was also observed. Although the projects initial goal was only to improve visually the situation in the slums, it became a new tourist destination, and the economic benefit that came with it had an effect also on the change of behavior of the residents and the government towards sanitation. It also grew from only including the Kesatrian Village to expanding to the Jodipan Village in the course of less than a year. To investigate the success of this project, in this paper a descriptive model will be used and data will be drawn from intensive interviews with the initiators of the project, residents affected by the project and government officials. In this research it is argued that three points mark the success of the project: (1) the strategic initial impact due to choice of location, (2) the influx of tourists that triggered behavioral change among residents and, (3) the direct economic impact which ensured its sustainability and growth by gaining government officials support and attention for more public spending in the area for slum development and sanitation improvement.

Keywords: behaviour change, sanitation, slum, strategic thinking

Procedia PDF Downloads 313
6363 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane

Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo

Abstract:

Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.

Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler

Procedia PDF Downloads 263
6362 Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris

Authors: Rouag N., Khalifa M. W., Bencheikh A., Abed H.

Abstract:

The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs.

Keywords: chickpea, Cicer arietinum, Fusarium oxysporum, genotype resistance

Procedia PDF Downloads 71
6361 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions

Authors: David Kriebel, Jan Edgar Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia PDF Downloads 225
6360 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 143
6359 Investigation of Mechanical Properties on natural fiber Reinforced Epoxy Composites

Authors: Gopi Kerekere Rangaraju, Madhu Puttegowda

Abstract:

Natural fibres composites include coir, jute, bagasse, cotton, bamboo, and hemp. Natural fibers come from plants. These fibers contain lingo cellulose in nature. Natural fibers are eco-friendly; lightweight, strong, renewable, cheap, and biodegradable. The natural fibers can be used to reinforce both thermosetting and thermoplastic matrices. Thermosetting resins such as epoxy, polyester, polyurethane, and phenolic are commonly used composites requiring higher performance applications. They provide sufficient mechanical properties, in particular, stiffness and strength at acceptably low-price levels. Recent advances in natural fibers development are genetic engineering. The composites science offers significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. Natural fibers composites are attractive to industry because of their low density and ecological advantages over conventional composites. These composites are gaining importance due to their non-carcinogenic and bio-degradable nature. Natural fibers composites are a very costeffective material, especially in building and construction, packaging, automobile and railway coach interiors, and storage devices. These composites are potential candidates for the replacement of high- cost glass fibers for low load bearing applications. Natural fibers have the advantages of low density, low cost, and biodegradability

Keywords: PMC, basalt, coir, carbon fibers

Procedia PDF Downloads 121
6358 Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction

Authors: Aleksandrs Kovalcuks, Mara Duma

Abstract:

Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.

Keywords: cholesterol, egg yolk oil, lutein, phospholipids, solvent extraction

Procedia PDF Downloads 492
6357 The Factors for Developing Trainers in Auto Parts Manufacturing Factories at Amata Nakon Industrial Estate in Cholburi Province

Authors: Weerakarj Dokchan

Abstract:

The purposes of this research are to find out the factors for developing trainers in the auto part manufacturing factories (AMF) in Amata Nakon Industrial Estate Cholburi. Population in this study included 148 operators to complete the questionnaires and 10 trainers to provide the information on the interview. The research statistics consisted of percentage, mean, standard deviation and step-wise multiple linear regression analysis.The analysis of the training model revealed that: The research result showed that the development factors of trainers in AMF consisted of 3 main factors and 8 sub-factors: 1) knowledge competency consisting of 4 sub-factors; arrangement of critical thinking, organizational loyalty, working experience of the trainers, analysis of behavior, and work and organization loyalty which could predict the success of the trainers at 55.60%. 2) Skill competency consisted of 4 sub-factors, arrangement of critical thinking, organizational loyalty and analysis of behavior and work and the development of emotional quotient. These 4 sub-factors could predict the success of the trainers in skill aspect 55.90%. 3) The attitude competency consisted of 4 sub-factors, arrangement of critical thinking, intention of trainee computer competency and teaching psychology. In conclusion, these 4 sub-factors could predict the success of the trainers in attitude aspect 58.50%.

Keywords: the development factors, trainers development, trainer competencies, auto part manufacturing factory (AMF), AmataNakon Industrial Estate Cholburi

Procedia PDF Downloads 289
6356 Optimization of Multi-Disciplinary Expertise and Resource for End-Stage Renal Failure (ESRF) Patient Care

Authors: Mohamed Naser Zainol, P. P. Angeline Song

Abstract:

Over the years, the profile of end-stage renal patients placed under The National Kidney Foundation Singapore (NKFS) dialysis program has evolved, with a gradual incline in the number of patients with behavior-related issues. With these challenging profiles, social workers and counsellors are often expected to oversee behavior management, through referrals from its partnering colleagues. Due to the segregation of tasks usually found in many hospital-based multi-disciplinary settings, social workers’ and counsellors’ interventions are often seen as an endpoint, limiting other stakeholders’ involvement that could otherwise be potentially crucial in managing such patients. While patients’ contact in local hospitals often leads to eventual discharge, NKFS patients are mostly long term. It is interesting to note that these patients are regularly seen by a team of professionals that includes doctors, nurses, dietitians, exercise specialists in NKFS. The dynamism of relationships presents an opportunity for any of these professionals to take ownership of their potentials in leading interventions that can be helpful to patients. As such, it is important to have a framework that incorporates the strength of these professionals and also channels empowerment across the multi-disciplinary team in working towards wholistic patient care. This paper would like to suggest a new framework for NKFS’s multi-disciplinary team, where the group synergy and dynamics are used to encourage ownership and promote empowerment. The social worker and counsellor use group work skills and his/her knowledge of its members’ strengths, to generate constructive solutions that are centered towards patient’s growth. Using key ideas from Karl’s Tomm Interpersonal Communications, the Communication Management of Meaning and Motivational Interviewing, the social worker and counsellor through a series of guided meeting with other colleagues, facilitates the transmission of understanding, responsibility sharing and tapping on team resources for patient care. As a result, the patient can experience personal and concerted approach and begins to flow in a direction that is helpful for him. Using seven case studies of identified patients with behavioral issues, the social worker and counsellor apply this framework for a period of six months. Patient’s overall improvement through interventions as a result of this framework are recorded using the AB single case design, with baseline measured three months before referral. Interviews with patients and their families, as well as other colleagues that are not part of the multi-disciplinary team are solicited at mid and end points to gather their experiences about patient’s progress as a by-product of this framework. Expert interviews will be conducted on each member of the multi-disciplinary team to study their observations and experience in using this new framework. Hence, this exploratory framework hopes to identify the inherent usefulness in managing patients with behavior related issues. Moreover, it would provide indicators in improving aspects of the framework when applied to a larger population.

Keywords: behavior management, end-stage renal failure, satellite dialysis, multi-disciplinary team

Procedia PDF Downloads 130
6355 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 211
6354 Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment

Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul

Abstract:

The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.

Keywords: ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties

Procedia PDF Downloads 299
6353 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties

Authors: Suzanne Giasson, Alberto Guerron

Abstract:

Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.

Keywords: responsive materials, polymers, surfaces, cell culture

Procedia PDF Downloads 63
6352 Scrutinizing the Effective Parameters on Cuttings Movement in Deviated Wells: Experimental Study

Authors: Siyamak Sarafraz, Reza Esmaeil Pour, Saeed Jamshidi, Asghar Molaei Dehkordi

Abstract:

Cutting transport is one of the major problems in directional and extended reach oil and gas wells. Lack of sufficient attention to this issue may bring some troubles such as casing running, stuck pipe, excessive torque and drag, hole pack off, bit wear, decreased the rate of penetration (ROP), increased equivalent circulation density (ECD) and logging. Since it is practically impossible to directly observe the behavior of deep wells, a test setup was designed to investigate cutting transport phenomena. This experimental work carried out to scrutiny behavior of the effective variables in cutting transport. The test setup contained a test section with 17 feet long that made of a 3.28 feet long transparent glass pipe with 3 inch diameter, a storage tank with 100 liters capacity, drill pipe rotation which made of stainless steel with 1.25 inches diameter, pump to circulate drilling fluid, valve to adjust flow rate, bit and a camera to record all events which then converted to RGB images via the Image Processing Toolbox. After preparation of test process, each test performed separately, and weights of the output particles were measured and compared with each other. Observation charts were plotted to assess the behavior of viscosity, flow rate and RPM in inclinations of 0°, 30°, 60° and 90°. RPM was explored with other variables such as flow rate and viscosity in different angles. Also, effect of different flow rate was investigated in directional conditions. To access the precise results, captured image were analyzed to find out bed thickening and particles behave in the annulus. The results of this experimental study demonstrate that drill string rotation helps particles to be suspension and reduce the particle deposition cutting movement increased significantly. By raising fluid velocity, laminar flow converted to turbulence flow in the annulus. Increases in flow rate in horizontal section by considering a lower range of viscosity is more effective and improved cuttings transport performance.

Keywords: cutting transport, directional drilling, flow rate, hole cleaning, pipe rotation

Procedia PDF Downloads 271
6351 Beyond Black Friday: The Value of Collaborative Research on Seasonal Shopping Events and Behavior

Authors: Jasmin H. Kwon , Thomas M. Brinthaupt

Abstract:

There is a general lack of consumer behavior research on seasonal shopping events. Studying these kinds of events is interesting and important for several reasons. First, global shopping opportunities have implications for cross-cultural shopping events and effects on seasonal events in other countries. Second, seasonal shopping events are subject to economic conditions and may wane in popularity, especially with e-commerce options. Third, retailers can expand the success of their seasonal shopping events by taking advantage of cross-cultural opportunities. Fourth, it is interesting to consider how consumers from other countries might take advantage of different countries’ seasonal shopping events. Many countries have seasonal shopping events such as Black Friday. Research on these kinds of events can lead to the identification of cross-cultural similarities and differences in consumer behavior. We compared shopping motivations of college students who did (n=36) and did not (n=81) shop on Cyber Monday. The results showed that the groups did not differ significantly on any of the shopping motivation subscales. The Cyber Monday shoppers reported being significantly more likely to agree than disagree that their online shopping experience was enjoyable and exciting. They were more likely to disagree than agree that their experience was overwhelming. In addition, they agreed that they shopped only for deals, purchased the exact items they wanted, and thought that their efforts were worth it. Finally, they intended to shop again at next year’s Cyber Monday. It appears that there are many positive aspects to online seasonal shopping, independent of one’s typical shopping motivations. Different countries have seasonal events similar to the Black Friday and Cyber Monday shopping holiday (e.g., Boxing Day, Fukubukuro, China’s Singles Day). In Korea, there is increasing interest in taking advantage of U.S. Black Friday and Cyber Monday opportunities. Government officials are interested in adapting the U.S. holiday to Korean retailers, essentially recreating the Black Friday/Cyber Monday holiday there. Similarly, the Japanese Fukubukuro ('Lucky Bag') holiday is being adapted by other countries such as Korea and the U.S. International shipping support companies are also emerging that help customers to identify and receive products from other countries. U.S. department stores also provide free shipping on international orders for certain items. As these structural changes are occurring and new options for global shopping emerge, the need to understand the role of shoppers’ motivations becomes even more important. For example, the Cyber Monday results are particularly relevant to the new landscape with e-commerce and cross-cultural opportunities, since many of these events involve e-commerce. Within today’s global market, physical location of a retail store is no longer a limitation to growing one’s market share. From a consumer perspective, it is important to investigate how shopping motivations are related to e-commerce seasonal events. From a retail perspective, understanding the shopping motivations of international customers would help retailers to expand and better tailor their seasonal shopping events beyond the boundaries of their own countries. From a collaborative perspective, research on this topic can include interdisciplinary researchers, including those from fashion merchandising, marketing, retailing, and psychology.

Keywords: Black Friday, cross-cultural research, Cyber Monday, seasonal shopping behavior

Procedia PDF Downloads 383
6350 Correction of Urinary Incontinence in Severe Spinal Canal Stenosis, Treated Patients

Authors: Ilirian Laçi, Alketa Spahiu

Abstract:

Ageing causes an increase in the number of patients with spinal canal stenosis. Most of the patients have back pain, leg pain, numbness of the legs, as well as urinary incontinence as a very common symptoms. Urinary incontinence impairs the quality of life. Correction of the symptom of urinary incontinence is possible in the early and adequate treatment of spinal stenosis. Methods: This study observed patients with urinary incontinence and spinal canal stenosis. These patients underwent mechanical decompression of the spinal stenosis through surgery. At the same time, these patients were observed clinically with clinical consultations. Cystoscopy and urodynamic tests were conducted at intervals of 2 and 6 months. As a result of treatment, 60% of patients did recover. The patients in this group who benefit from treatment were the patients who were early diagnosed and treated. Conclusions: An important factor in the prognosis of this pathology is the early diagnosis and treatment. The proper treatment of this pathology makes it curable in most cases. An important role in this pathology is played by the neurosurgeon. Surgery accompanied by laminotomy and mechanical decompression is the best way of treatment. Other factors that played a role in this pathology are also a large number of childbirths for women, obesity, etc.

Keywords: urinary incontinence, quality of life, spinal canal stenosis, early diagnosis, treatment

Procedia PDF Downloads 90
6349 Copolymers of Epsilon-Caprolactam Received via Anionic Polymerization in the Presence of Polypropylene Glycol Based Polymeric Activators

Authors: Krasimira N. Zhilkova, Mariya K. Kyulavska, Roza P. Mateva

Abstract:

The anionic polymerization of -caprolactam (CL) with bifunctional activators has been extensively studied as an effective and beneficial method of improving chemical and impact resistances, elasticity and other mechanical properties of polyamide (PA6). In presence of activators or macroactivators (MAs) also called polymeric activators (PACs) the anionic polymerization of lactams proceeds rapidly at a temperature range of 130-180C, well below the melting point of PA-6 (220C) permitting thus the direct manufacturing of copolymer product together with desired modifications of polyamide properties. Copolymers of PA6 with an elastic polypropylene glycol (PPG) middle block into main chain were successfully synthesized via activated anionic ring opening polymerization (ROP) of CL. Using novel PACs based on PPG polyols (with differ molecular weight) the anionic ROP of CL was realized and investigated in the presence of a basic initiator sodium salt of CL (NaCL). The PACs were synthesized as N-carbamoyllactam derivatives of hydroxyl terminated PPG functionalized with isophorone diisocyanate [IPh, 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane] and blocked then with CL units via an addition reaction. The block copolymers were analyzed and proved with 1H-NMR and FT-IR spectroscopy. The influence of the CL/PACs ratio in feed, the length of the PPG segments and polymerization conditions on the kinetics of anionic ROP, on average molecular weight, and on the structure of the obtained block copolymers were investigated. The structure and phase behaviour of the copolymers were explored with differential scanning calorimetry, wide-angle X-ray diffraction, thermogravimetric analysis and dynamic mechanical thermal analysis. The crystallinity dependence of PPG content incorporated into copolymers main backbone was estimate. Additionally, the mechanical properties of the obtained copolymers were studied by notched impact test. From the performed investigation in this study could be concluded that using PPG based PACs at the chosen ROP conditions leads to obtaining well-defined PA6-b-PPG-b-PA6 copolymers with improved impact resistance.

Keywords: anionic ring opening polymerization, caprolactam, polyamide copolymers, polypropylene glycol

Procedia PDF Downloads 397