Search results for: complex network platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11238

Search results for: complex network platform

8328 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha

Abstract:

Likewise other developing countries in the world, Pakistan is furthermore suffering from electrical energy deficiency as adverse well-being nominated. Its generation of electricity has become reliant onto a great range of conventional sources since the last ten of years. The foreseeable exhaustion of petroleum and conventional resources will be alarming in continued growth and development for future in Pakistan so renewable energy interchange have to be employed by interesting the majority of power grid network. Energy adding-up through solar photovoltaic based systems and projects can offset the shortfall to such an extent with this sustainable natural resources and most promising technologies. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability. This research study estimates the present and future approaching renewable energy resource for power generation to off-grid independent setup or energizing the existed conventional power grids of Pakistan to becoming self-sustained for its entire outfit.

Keywords: powergrid network, solar photovoltaic setups, solar power generation, solar energy technology

Procedia PDF Downloads 439
8327 Using GIS for Assessment and Modelling of Oil Spill Risk at Vulnerable Coastal Resources: Of Misratah Coast, Libya

Authors: Abduladim Maitieg

Abstract:

The oil manufacture is one of the main productive activities in Libya and has a massive infrastructure, including offshore drilling and exploration and wide oil export platform sites that located in coastal area. There is a threat to marine and coastal area of oil spills is greatest in those sites with a high spills comes from urban and industry, parallel to that, monitoring oil spills and risk emergency strategy is weakness, An approach for estimating a coastal resources vulnerability to oil spills is presented based on abundance, environmental and Scio-economic importance, distance to oil spill resources and oil risk likelihood. As many as 10 coastal resources were selected for oil spill assessment at the coast. This study aims to evaluate, determine and establish vulnerable coastal resource maps and estimating the rate of oil spill comes for different oil spill resources in Misratah marine environment. In the study area there are two type of oil spill resources, major oil resources come from offshore oil industries which are 96 km from the Coast and Loading/Uploading oil platform. However, the miner oil resources come from urban sewage pipes and fish ports. In order to analyse the collected database, the Geographic information system software has been used to identify oil spill location, to map oil tracks in front of study area, and developing seasonal vulnerable costal resources maps. This work shows that there is a differential distribution of the degree of vulnerability to oil spills along the coastline, with values ranging from high vulnerability and low vulnerability, and highlights the link between oil spill movement and coastal resources vulnerability. The results of assessment found most of costal freshwater spring sites are highly vulnerable to oil spill due to their location on the intertidal zone and their close to proximity to oil spills recourses such as Zreag coast. Furthermore, the Saltmarsh coastline is highly vulnerable to oil spill risk due to characterisation as it contains a nesting area of sea turtles and feeding places for migratory birds and the . Oil will reach the coast in winter season according to oil spill movement. Coastal tourist beaches in the north coast are considered as highly vulnerable to oil spill due to location and closeness to oil spill resources.

Keywords: coastal recourses vulnerability, oil spill trajectory, gnome software, Misratah coast- Libya, GIS

Procedia PDF Downloads 318
8326 Derivation of a Risk-Based Level of Service Index for Surface Street Network Using Reliability Analysis

Authors: Chang-Jen Lan

Abstract:

Current Level of Service (LOS) index adopted in Highway Capacity Manual (HCM) for signalized intersections on surface streets is based on the intersection average delay. The delay thresholds for defining LOS grades are subjective and is unrelated to critical traffic condition. For example, an intersection delay of 80 sec per vehicle for failing LOS grade F does not necessarily correspond to the intersection capacity. Also, a specific measure of average delay may result from delay minimization, delay equality, or other meaningful optimization criteria. To that end, a reliability version of the intersection critical degree of saturation (v/c) as the LOS index is introduced. Traditionally, the level of saturation at a signalized intersection is defined as the ratio of critical volume sum (per lane) to the average saturation flow (per lane) during all available effective green time within a cycle. The critical sum is the sum of the maximal conflicting movement-pair volumes in northbound-southbound and eastbound/westbound right of ways. In this study, both movement volume and saturation flow are assumed log-normal distributions. Because, when the conditions of central limit theorem obtain, multiplication of the independent, positive random variables tends to result in a log-normal distributed outcome in the limit, the critical degree of saturation is expected to be a log-normal distribution as well. Derivation of the risk index predictive limits is complex due to the maximum and absolute value operators, as well as the ratio of random variables. A fairly accurate functional form for the predictive limit at a user-specified significant level is yielded. The predictive limit is then compared with the designated LOS thresholds for the intersection critical degree of saturation (denoted as X

Keywords: reliability analysis, level of service, intersection critical degree of saturation, risk based index

Procedia PDF Downloads 133
8325 Cooperative Agents to Prevent and Mitigate Distributed Denial of Service Attacks of Internet of Things Devices in Transportation Systems

Authors: Borhan Marzougui

Abstract:

Road and Transport Authority (RTA) is moving ahead with the implementation of the leader’s vision in exploring all avenues that may bring better security and safety services to the community. Smart transport means using smart technologies such as IoT (Internet of Things). This technology continues to affirm its important role in the context of Information and Transportation Systems. In fact, IoT is a network of Internet-connected objects able to collect and exchange different data using embedded sensors. With the growth of IoT, Distributed Denial of Service (DDoS) attacks is also growing exponentially. DDoS attacks are the major and a real threat to various transportation services. Currently, the defense mechanisms are mainly passive in nature, and there is a need to develop a smart technique to handle them. In fact, new IoT devices are being used into a botnet for DDoS attackers to accumulate for attacker purposes. The aim of this paper is to provide a relevant understanding of dangerous types of DDoS attack related to IoT and to provide valuable guidance for the future IoT security method. Our methodology is based on development of the distributed algorithm. This algorithm manipulates dedicated intelligent and cooperative agents to prevent and to mitigate DDOS attacks. The proposed technique ensure a preventive action when a malicious packets start to be distributed through the connected node (Network of IoT devices). In addition, the devices such as camera and radio frequency identification (RFID) are connected within the secured network, and the data generated by it are analyzed in real time by intelligent and cooperative agents. The proposed security system is based on a multi-agent system. The obtained result has shown a significant reduction of a number of infected devices and enhanced the capabilities of different security dispositives.

Keywords: IoT, DDoS, attacks, botnet, security, agents

Procedia PDF Downloads 146
8324 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.

Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence

Procedia PDF Downloads 131
8323 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 205
8322 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 429
8321 Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques

Authors: John Onyima, Ikechukwu Ezepue

Abstract:

Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks.

Keywords: anomaly-based detection, cloud computing, intrusion detection, intrusion prevention, signature-based detection

Procedia PDF Downloads 314
8320 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 421
8319 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques

Procedia PDF Downloads 333
8318 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier

Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur

Abstract:

Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.

Keywords: test case prioritization, classification, artificial neural networks, TF-IDF

Procedia PDF Downloads 402
8317 Graduates Construction of Knowledge and Ability to Act on Employable Opportunities

Authors: Martabolette Stecher

Abstract:

Introductory: How is knowledge and ability to act on employable opportunities constructed among students and graduates at higher educations? This question have been drawn much attention by researchers, governments and universities in Denmark, since there has been an increases in the rate of unemployment among graduates from higher education. The fact that more than ten thousand graduates from higher education without the opportunity to get a job in these years has a tremendous impact upon the social economy in Denmark. Every time a student graduate from higher education and become unemployed, it is possible to trace upon the person´s chances to get a job many years ahead. This means that the tremendous rate of graduate unemployment implies a decrease in employment and lost prosperity in Denmark within a billion Danish Kroner scale. Basic methodologies: The present study investigates the construction of knowledge and ability to act upon employable opportunities among students and graduates at higher educations in Denmark in a literature review as well as a preliminary study of students from Aarhus University. 15 students from the candidate of drama have been engaging in an introductory program at the beginning of their candidate study, which included three workshops focusing upon the more personal matters of their studies and life. They have reflected upon this process during the intervention and afterwards in a semi-structured interview. Concurrently a thorough literature review has delivered key concepts for the exploration of the research question. Major findings of the study: It is difficult to find one definition of what employability encompasses, hence the overall picture of how to incorporate the concept is difficult. The present theory of employability has been focusing upon the competencies, which students and graduates are going to develop in order to become employable. In recent years there has been an emphasis upon the mechanism which supports graduates to trust themselves and to develop their self-efficacy in terms of getting a sustainable job. However, there has been little or no focus in the literature upon the idea of how students and graduates from higher education construct knowledge about and ability to act upon employable opportunities involving network of actors both material and immaterial network and meaningful relations for students and graduates in developing their enterprising behavior to achieve employment. The Act-network-theory combined with theory of entrepreneurship education suggests an alternative strategy to focus upon when explaining sustainable ways of creating employability among graduates. The preliminary study also supports this theory suggesting that it is difficult to emphasize a single or several factors of importance rather highlighting the effect of a multitude network. Concluding statement: This study is the first step of a ph.d.-study investigating this problem in Denmark and the USA in the period 2015 – 2019.

Keywords: employablity, graduates, action, opportunities

Procedia PDF Downloads 201
8316 E-Procurement Adoption and Effective Service Delivery in the Uganda Coffee Industry

Authors: Taus Muganda

Abstract:

This research explores the intricate relationship between e-procurement adoption and effective service delivery in the Uganda Coffee Industry, focusing on the processes involved, key actors, and the impact of digital transformation. The study is guided by three prominent theories, Actor-Network Theory, Resource-Based View Theory, and Institutional Theory to comprehensively explore the dynamics of e-procurement in the context of the coffee sector. The primary aim of this project is to examine the e-procurement adoption process and its role in enhancing service delivery within the Uganda Coffee Industry. The research questions guiding this inquiry are: firstly, whether e-procurement adoption and implementation contribute to achieving quality service delivery; and secondly, how e-procurement adoption can be effectively realized within the Uganda Coffee Industry. To address these questions, the study has laid out specific objectives. Firstly, it seeks to investigate the impact of e-procurement on effective service delivery, analysing how the integration of digital processes influences the overall quality of services provided in the coffee industry. Secondly, it aims to critically analyse the measures required to achieve effective delivery outcomes through the adoption and implementation of e-procurement, assessing the strategies that can maximize the benefits of digital transformation. Furthermore, the research endeavours to identify and examine the key actor’s instrumental in achieving effective service delivery within the Uganda Coffee Industry. By utilizing Actor-Network Theory, the study will elucidate the network of relationships and collaborations among actors involved in the e-procurement process. The research contributes to addressing a critical gap in the sector. Despite coffee being the leading export crop in Uganda, constituting 16% of total exports, there is a recognized need for digital transformation, specifically in the realm of e-procurement, to enhance the productivity of producers and contribute to the economic growth of the country. The study aims to provide insights into transforming the Uganda Coffee Industry by focusing on improving the e-procurement services delivered to actors in the coffee sector. The three forms of e-procurement investigated in this research—E-Sourcing, E-Payment, and E-Invoicing—serve as focal points in understanding the multifaceted dimensions of digital integration within the Uganda Coffee Industry. This research endeavours to offer practical recommendations for policymakers, industry stakeholders, and the UCDA to strategically leverage e-procurement for the benefit of the entire coffee value chain.

Keywords: e-procurement, effective service delivery, actors, actor-network theory, resource-based view theory, institutional theory, e-invocing, e-payment, e-sourcing

Procedia PDF Downloads 78
8315 Innovation Management in State-Owned-Enterprises in the Digital Transformation: An Empirical Case Study of Swiss Post

Authors: Jiayun Shen, Lorenz Wyss, Thierry Golliard, Matthias Finger

Abstract:

Innovation is widely recognized as the key for private enterprises to win the market competition. The state-owned-enterprises need to be innovative to compete in the market after the privatization as well. However, it is a lack of research to study how state-owned-enterprises manage innovation to create new products and services. Swiss Post, a Swiss state-owned-enterprises, has established a department to transform the corporate culture and foster innovation to achieve digital transformation. This paper describes the innovation management process at the Swiss Post and analyzes the impacts of the instruments, the organizational structure, and explores the barriers of innovation. This study used qualitative methods based on a review of the literature on innovation management and semi-structured interviews. Being established for over five years, the Swiss Post’s innovation management department has established a software-assisted modularized platform with systematic instruments to help the internal employees with the different innovation processes. It guides the innovators from idea creation to piloting in markets and supports with a separate financing source, with knowledge inputs and coaching, as well as with connections to external partners through the open innovation and venturing team. The platform also adapts to different business units within the corporate with a customized tailor for the various operational business units. The separate financing instruments enabled the creation and further development of new ideas; the coaching services contribute greatly to the transformation of teams’ innovation culture by providing new knowledge, thinking methods, and use cases for inspiration. It also facilitates organizational learning to help the whole corporate with the digital transformation. However, it is also confronted with a big challenge in twofold. Internally, the disruptive projects often hardly overcome the obstacles of long-established operational processes in the traditional business units; externally, the expectations of the public and restrictions from the federal government have become high hurdles for the company to stay and compete in the innovation track.

Keywords: empirical case study, innovation management, state-owned-enterprise, Swiss Post

Procedia PDF Downloads 128
8314 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 72
8313 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 530
8312 A Focused, High-Intensity Spread-Spectrum Ultrasound Solution to Prevent Biofouling

Authors: Alan T. Sassler

Abstract:

Biofouling is a significant issue for ships, especially those based in warm water ports. Biofouling damages hull coatings, degrades platform hydrodynamics, blocks cooling water intakes, and returns, reduces platform range and speed, and increases fuel consumption. Although platforms are protected to some degree by antifouling paints, these paints are much less effective on stationary platforms, and problematic biofouling can occur on antifouling paint-protected stationary platforms in some environments in as little as a matter of weeks. Remediation hull cleaning operations are possible, but they are very expensive, sometimes result in damage to the vessel’s paint or hull and are generally not completely effective. Ultrasound with sufficient intensity focused on specific frequency ranges can be used to prevent the growth of biofouling organisms. The use of ultrasound to prevent biofouling isn't new, but systems to date have focused on protecting platforms by shaking the hull using internally mounted transducers similar to those used in ultrasonic cleaning machines. While potentially effective, this methodology doesn't scale well to large platforms, and there are significant costs associated with installing and maintaining these systems, which dwarf the initial purchase price. An alternative approach has been developed, which uses highly directional pier-mounted transducers to project high-intensity spread-spectrum ultrasonic energy into the water column focused near the surface. This focused energy has been shown to prevent biofouling at ranges of up to 50 meters from the source. Spreading the energy out over a multi-kilohertz band makes the system both more effective and more environmentally friendly. This system has been shown to be both effective and inexpensive in small-scale testing and is now being characterized on a larger scale in selected marinas. To date, test results have been collected in Florida marinas suggesting that this approach can be used to keep ensonified areas of thousands of square meters free from biofouling, although care must be taken to minimize shaded areas.

Keywords: biofouling, ultrasonic, environmentally friendly antifoulant, marine protection, antifouling

Procedia PDF Downloads 64
8311 Going Viral: Expanding a Student-Run COVID-19 Journal Club to Social Media

Authors: Joseph Dodson, Robert Roth, Alexander Hodakowski, Leah Greenfield, Melissa Porterhouse, Natalie Maltby, Rachel Sadowsky

Abstract:

Introduction: Throughout the COVID-19 pandemic, countless research publications were released regarding SARS-CoV-2 and its variants, suggested treatments, and vaccine safety and efficacy. Daily publication of research became overwhelming for health professionals and the general public to stay informed. To address this problem, a group of 70 students across the four colleges at Rush University created the “Rush University COVID-19 Journal Club.” To broaden the available audience, the journal club then expanded to social media. Methods: Easily accessible and understandable summaries of the research were written by students and sent to faculty sponsors for feedback. Following the revision, summaries were published weekly on the Rush University COVID-19 Journal Club website for clinicians and students to use for reference. An Instagram page was then created, and information was further condensed into succinct posts to address COVID-19 “FAQs.” Next, a survey was distributed to followers of the Instagram page with questions meant to assess the effectiveness of the platform and gain feedback. A 5-point Likert scale was used as the primary question format. Results: The Instagram page accrued 749 followers and posted 52 unique posts over a 2 year period. Preliminary results from the surveys demonstrate that over 80% of respondents strongly agree that the Instagram posts 1) are an effective platform for the public presentation of factual COVID-19-related information; 2) provide relevant and valuable information; 3) provide information that is clear, concise, and can be easily understood. Conclusion: These results suggest that the Rush COVID-19 Journal Club was able to successfully create a social media presence and convey information without sacrificing scholarly integrity. Other academic institutions may benefit from the application of this model to help students and clinicians with the interpretation and evaluation of research topics with large bodies of evidence.

Keywords: SARS-CoV-2, COVID-19, public health, social media, SARS-CoV-2 vaccine, SARS-CoV-2 variants

Procedia PDF Downloads 132
8310 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 227
8309 Dynamic Modelling and Assessment for Urban Growth and Transport in Riyadh City, Saudi Arabia

Authors: Majid Aldalbahi

Abstract:

In 2009, over 3.4 billion people in the world resided in urban areas as a result of rapid urban growth. This figure is estimated to increase to 6.5 billion by 2050. This urban growth phenomenon has raised challenges for many countries in both the developing and developed worlds. Urban growth is a complicated process involving the spatiotemporal changes of all socio-economic and physical components at different scales. The socio-economic components of urban growth are related to urban population growth and economic growth, while physical components of urban growth and economic growth are related to spatial expansion, land cover change and land use change which are the focus of this research. The interactions between these components are complex and no-linear. Several factors and forces cause these complex interactions including transportation and communication, internal and international migrations, public policies, high natural growth rates of urban populations and public policies. Urban growth has positive and negative consequences. The positive effects relates to planned and orderly urban growth, while negative effects relate to unplanned and scattered growth, which is called sprawl. Although urban growth is considered as necessary for sustainable urbanization, uncontrolled and rapid growth cause various problems including consumption of precious rural land resources at urban fringe, landscape alteration, traffic congestion, infrastructure pressure, and neighborhood conflicts. Traditional urban planning approaches in fast growing cities cannot accommodate the negative consequences of rapid urban growth. Microsimulation programme, and modelling techniques are effective means to provide new urban development, management and planning methods and approaches. This paper aims to use these techniques to understand and analyse the complex interactions for the case study of Riyadh city, a fast growing city in Saudi Arabia.

Keywords: policy implications, urban planning, traffic congestion, urban growth, Suadi Arabia, Riyadh

Procedia PDF Downloads 488
8308 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean

Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.

Keywords: coral environment, marine microbiology, network analysis, omics data analysis

Procedia PDF Downloads 257
8307 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.

Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA

Procedia PDF Downloads 160
8306 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 154
8305 Teaching Health in an Online 3D Virtual Learning Environment

Authors: Nik Siti Hanifah Nik Ahmad

Abstract:

This research discuss about teaching cupping therapy or hijama by using an online 3D Virtual Learning Environment. The experimental platform was using of flash and Second Life as 2D and 3D comparison. 81 samples have been used in three experiments with 21 in the first and 30 in each second and third. The design of the presentation was tested in five categories such as effectiveness, ease of use, efficacy, aesthetic and users’ satisfaction. The results from three experiments had shown promising outcome for usage of the technique to be implement in teaching Cupping Therapy as well as other alternative or conventional medicine knowledge especially for training.

Keywords: medical and health, cupping therapy or hijama, second life, online 3D VLE, virtual worlds

Procedia PDF Downloads 427
8304 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure

Procedia PDF Downloads 133
8303 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal

Authors: Han Xue, Zhang Lanyue

Abstract:

In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.

Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network

Procedia PDF Downloads 535
8302 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 348
8301 Corpora in Secondary Schools Training Courses for English as a Foreign Language Teachers

Authors: Francesca Perri

Abstract:

This paper describes a proposal for a teachers’ training course, focused on the introduction of corpora in the EFL didactics (English as a foreign language) of some Italian secondary schools. The training course is conceived as a part of a TEDD participant’s five months internship. TEDD (Technologies for Education: diversity and devices) is an advanced course held by the Department of Engineering and Information Technology at the University of Trento, Italy. Its main aim is to train a selected, heterogeneous group of graduates to engage with the complex interdependence between education and technology in modern society. The educational approach draws on a plural coexistence of various theories as well as socio-constructivism, constructionism, project-based learning and connectivism. TEDD educational model stands as the main reference source to the design of a formative course for EFL teachers, drawing on the digitalization of didactics and creation of learning interactive materials for L2 intermediate students. The training course lasts ten hours, organized into five sessions. In the first part (first and second session) a series of guided and semi-guided activities drive participants to familiarize with corpora through the use of a digital tools kit. Then, during the second part, participants are specifically involved in the realization of a ML (Mistakes Laboratory) where they create, develop and share digital activities according to their teaching goals with the use of corpora, supported by the digital facilitator. The training course takes place into an ICT laboratory where the teachers work either individually or in pairs, with a computer connected to a wi-fi connection, while the digital facilitator shares inputs, materials and digital assistance simultaneously on a whiteboard and on a digital platform where participants interact and work together both synchronically and diachronically. The adoption of good ICT practices is a fundamental step to promote the introduction and use of Corpus Linguistics in EFL teaching and learning processes, in fact dealing with corpora not only promotes L2 learners’ critical thinking and orienteering versus wild browsing when they are looking for ready-made translations or language usage samples, but it also entails becoming confident with digital tools and activities. The paper will explain reasons, limits and resources of the pedagogical approach adopted to engage EFL teachers with the use of corpora in their didactics through the promotion of digital practices.

Keywords: digital didactics, education, language learning, teacher training

Procedia PDF Downloads 156
8300 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 249
8299 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 65