Search results for: laser line detection
3852 2D Surface Flow Model in The Biebrza Floodplain
Authors: Dorota Miroslaw-Swiatek, Mateusz Grygoruk, Sylwia Szporak
Abstract:
We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009.Keywords: floodplain flow, Biebrza valley, model simulation, 2D surface flow model
Procedia PDF Downloads 5013851 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power
Authors: T. Mohammed Chikouche, K. Hartani
Abstract:
In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.Keywords: power quality, direct power control, power ripple, switching table, unity power factor
Procedia PDF Downloads 3243850 Miniaturized Wideband Single-Feed Shorted-Edge Stacked Patch Antenna for C-Band Applications
Authors: Abdelheq Boukarkar, Omar Guermoua
Abstract:
In this paper, we propose a miniaturized and wideband patch antenna for C-band applications. The antenna miniaturization is obtained by loading shorting vias along one patch edge. At the same time, the wideband performance is achieved by combining two resonances using one feed line. The measured results reveal that the antenna covers the frequency band 4.32 GHz to 6.52 GHz (41%) with a peak gain and a peak efficiency of 5.5 dBi and 87%, respectively. The antenna occupies a relatively small size of only 26 x 22 x 5.6 mm3, making it suitable for compact wireless devices requiring a stable unidirectional gain over a wide frequency range.Keywords: miniaturized antennas, patch antennas, stable gain, wideband antennas
Procedia PDF Downloads 2183849 Simulation of Performance of LaBr₃ (Ce) Using GEANT4
Authors: Zarana Dave
Abstract:
Cerium-doped lanthanum bromide, LaBr₃ (Ce), scintillator shows attracting properties for spectroscopy that makes it a suitable solution for security, medical, geophysics and high energy physics applications. Here, the performance parameters of a cylindrical LaBr₃ (Ce) scintillator was investigated. The first aspect is the determination of the efficiency for γ - ray detection, measured with GEANT4 simulation toolkit from 10keV to 10MeV energy range. The second is the detailed study of background radiation of LaBr₃ (Ce). It has relatively high intrinsic radiation background due to naturally occurring ¹³⁸La and ²²⁷Ac radioisotopes.Keywords: LaBr₃(Ce), GEANT4, efficiency, background radiation
Procedia PDF Downloads 2243848 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation
Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier
Abstract:
Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet
Procedia PDF Downloads 2713847 Totally Implantable Venous Access Device for Long Term Parenteral Nutrition in a Patient with High Output Enterocutaneous Fistula Due to Advanced Malignancy
Authors: Puneet Goyal, Aarti Agarwal
Abstract:
Background and Objective: Nutritional support is an integral part of palliative care of advanced non-resectable abdominal malignancy patients, though is frequently neglected aspect. Non-Healing high output Entero-cutaneous fistulas sometimes require long term parenteral nutrition, to take care of catabolism and replacement of nutrients. We present a case of inoperable pancreatic malignancy with high output entero-cutaneous fistula, which was provided parenteral nutritional support with the use of Totally Implantable Venous Access Device (TIVAD). Method and Results: 55 year old man diagnosed with carcinoma pancreas had developed high entero-cutaneous fistula. His tumor was found to be inoperable and was on total parenteral nutrition through routine central line. This line was difficult to maintain as he required it for a long term TPN. He was planned to undergo Totally Implantable Venous Access Device (TIVAD) implantation. 8Fr single lumen catheter with Groshong non-return Valve (Bard Access Systems, Inc. USA) was inserted through right internal jugular vein, under fluoroscopic guidance. The catheter was tunneled subcutaneously and brought towards infraclavicular pocket, cut at appropriate length and connected to port and locked. Port was sutured in floor of pocket. Free flow of blood aspirated, flushed with heparinized saline. There was no kink observed in entire length of catheter under fluoroscopy. Skin over infraclavicular pocket was sutured. Long term catheter care and associated risks were explained to patient and relatives. Patient continued to receive total parenteral nutrition as well as other supportive therapy though TIVAD for next 6 weeks, till his demise. Conclusion: TIVADs are standard of care for long term venous access solutions in cancer patients requiring chemotherapy. In this case, we extended its use for providing parenteral nutrition and other supportive therapy. TIVADs can be implanted in advanced cancer patients for providing venous access solution required for various palliative treatments and medications. This will help in improving quality of life and satisfaction amongst terminally ill cancer patients.Keywords: parenteral nutrition, totally implantable venous access device, long term venous access, interventions in anesthesiology
Procedia PDF Downloads 2483846 Evaluation of Cytotoxic Effect of Two Diterpenes from Plectranthus barbatus
Authors: Nawal Al Musayeib, Musarat Amina, Perwez Alam
Abstract:
Plectranthus barbatus Andrews (Lamiaceae) is the most common species of genus Plectranthus. It is used for treating various ailments. In this study, two rare diterpenes 11,14-dihydroxy-8,11,13-abietatrien-7-one (1) and 12-hydroxyabieta-8(14),9(11),12-trien-7-one (2) were isolated for the first time from P. barbatus. Their chemical structures were verified utilizing various spectroscopic experiments. The effect of diterpenes against undifferentiated/anaplastic thyroid cancer cell line (FRO) was evaluated and they were quantitatively analysed using HPTLC method. The two diterpenes were found to be cytotoxic, however compound 1 showed significant cytotoxic effects where 95% reduction in the cell viability was observed in different time intervals. The quantity of compound 1 and compound 2 in PBCE were found to be 2.04 and15.97 μg/mg, respectively of dried weight of the extract.Keywords: abietatrien, cancer, diterpenes, Plectranthus barbatus
Procedia PDF Downloads 2553845 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 1103844 Securing Mobile Ad-Hoc Network Utilizing OPNET Simulator
Authors: Tariq A. El Shheibia, Halima Mohamed Belhamad
Abstract:
This paper is considered securing data based on multi-path protocol (SDMP) in mobile ad hoc network utilizing OPNET simulator modular 14.5, including the AODV routing protocol at the network as based multi-path algorithm for message security in MANETs. The main idea of this work is to present a way that is able to detect the attacker inside the MANETs. The detection for this attacker will be performed by adding some effective parameters to the network.Keywords: MANET, AODV, malicious node, OPNET
Procedia PDF Downloads 2973843 Conformance to Spatial Planning between the Kampala Physical Development Plan of 2012 and the Existing Land Use in 2021
Authors: Brendah Nagula, Omolo Fredrick Okalebo, Ronald Ssengendo, Ivan Bamweyana
Abstract:
The Kampala Physical Development Plan (KPDP) was developed in 2012 and projected both long term and short term developments within the City .The purpose of the plan was to not only shape the city into a spatially planned area but also to control the urban sprawl trends that had expanded with pronounced instances of informal settlements. This plan was approved by the National Physical Planning Board and a signature was appended by the Minister in 2013. Much as the KPDP plan has been implemented using different approaches such as detailed planning, development control, subdivision planning, carrying out construction inspections, greening and beautification, there is still limited knowledge on the level of conformance towards this plan. Therefore, it is yet to be determined whether it has been effective in shaping the City into an ideal spatially planned area. Attaining a clear picture of the level of conformance towards the KPDP 2012 through evaluation between the planned and the existing land use in Kampala City was performed. Methods such as Supervised Classification and Post Classification Change Detection were adopted to perform this evaluation. Scrutiny of findings revealed Central Division registered the lowest level of conformance to the planning standards specified in the KPDP 2012 followed by Nakawa, Rubaga, Kawempe, and Makindye. Furthermore, mixed-use development was identified as the land use with the highest level of non-conformity of 25.11% and institutional land use registered the highest level of conformance of 84.45 %. The results show that the aspect of location was not carefully considered while allocating uses in the KPDP whereby areas located near the Central Business District have higher land rents and hence require uses that ensure profit maximization. Also, the prominence of development towards mixed-use denotes an increased demand for land towards compact development that was not catered for in the plan. Therefore in order to transform Kampala city into a spatially planned area, there is need to carefully develop detailed plans especially for all the Central Division planning precincts indicating considerations for land use densification.Keywords: spatial plan, post classification change detection, Kampala city, landuse
Procedia PDF Downloads 963842 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 3093841 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting
Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu
Abstract:
large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.Keywords: automatic attendance, face detection, haar-like cascade, manual attendance
Procedia PDF Downloads 733840 An Application of Graph Theory to The Electrical Circuit Using Matrix Method
Authors: Samai'la Abdullahi
Abstract:
A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table
Procedia PDF Downloads 5643839 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1723838 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers
Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner
Abstract:
In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test
Procedia PDF Downloads 1253837 Study on the Focus of Attention of Special Education Students in Primary School
Authors: Tung-Kuang Wu, Hsing-Pei Hsieh, Ying-Ru Meng
Abstract:
Special Education in Taiwan has been facing difficulties including shortage of teachers and lack in resources. Some students need to receive special education are thus not identified or admitted. Fortunately, information technologies can be applied to relieve some of the difficulties. For example, on-line multimedia courseware can be used to assist the learning of special education students and take pretty much workload from special education teachers. However, there may exist cognitive variations between students in special or regular educations, which suggests the design of online courseware requires different considerations. This study aims to investigate the difference in focus of attention (FOA) between special and regular education students of primary school in viewing the computer screen. The study is essential as it helps courseware developers in determining where to put learning elements that matter the most on the right position of screen. It may also assist special education specialists to better understand the subtle differences among various subtypes of learning disabilities. This study involves 76 special education students (among them, 39 are students with mental retardation, MR, and 37 are students with learning disabilities, LDs) and 42 regular education students. The participants were asked to view a computer screen showing a picture partitioned into 3 × 3 areas with each area filled with text or icon. The subjects were then instructed to mark on the prior given paper sheets, which are also partitioned into 3 × 3 grids, the areas corresponding to the pictures on the computer screen that they first set their eyes on. The data are then collected and analyzed. Major findings are listed: 1. In both text and icon scenario, significant differences exist in the first preferred FOA between special and regular education students. The first FOA for the former is mainly on area 1 (upper left area, 53.8% / 51.3% for MR / LDs students in text scenario; and 53.8% / 56.8% for MR / LDs students in icons scenario), while the latter on area 5 (middle area, 50.0% and 57.1% in text and icons scenarios). 2. The second most preferred area in text scenario for students with MR and LDs are area 2 (upper-middle, 20.5%) and 5 (middle area, 24.3%). In icons scenario, the results are similar, but lesser in percentage. 3. Students with LDs that show similar preference (either in text or icons scenarios) in FOA to regular education students tend to be of some specific sub-type of learning disabilities. For instance, students with LDs that chose area 5 (middle area, either in text or icon scenario) as their FOA are mostly ones that have reading or writing disability. Also, three (out of 13) subjects in this category, after going through the rediagnosis process, were excluded from being learning disabilities. In summary, the findings suggest when designing multimedia courseware for students with MR and LDs, the essential learning elements should be placed on area 1, 2 and 5. In addition, FOV preference may also potentially be used as an indicator for diagnosing students with LDs.Keywords: focus of attention, learning disabilities, mental retardation, on-line multimedia courseware, special education
Procedia PDF Downloads 1653836 KAP Study on Breast Cancer Among Women in Nirmala Educational Institutions-A Prospective Observational Study
Authors: Shaik Asha Begum, S. Joshna Rani, Shaik Abdul Rahaman
Abstract:
INTRODUCTION: Breast cancer is a disease that creates in breast cells. "KAP" study estimates the Knowledge, Attitude, and Practices of a local area. More than 1.5 million ladies (25% of all ladies with malignancy) are determined to have bosom disease consistently all through the world. Understanding the degrees of Knowledge, Attitude and Practice will empower a more effective cycle of mindfulness creation as it will permit the program to be custom-made all the more properly to the necessities of the local area. OBJECTIVES: The objective of this study is to assess the knowledge on signs and symptoms, risk factors, provide awareness on the practicing of the early detection techniques of breast cancer and provide knowledge on the overall breast cancer including preventive techniques. METHODOLOGY: This is an expressive cross-sectional investigation. This investigation of KAP was done in the Nirmala Educational Institutions from January to April 2021. A total of 300 participants are included from women students in pharmacy graduates & lecturers, and also from graduates other than the pharmacy. The examiners are taken from the BCAM (Breast Cancer Awareness Measure), tool compartment (Version 2). RESULT: According to the findings of the study, the majority of the participants were not well informed about breast cancer. A lump in the breast was the most commonly mentioned sign of breast cancer, followed by pain in the breast or nipple. The percentage of knowledge related to the breast cancer risk factors was also very less. The correct answers for breast cancer risk factors were radiation exposure (58.20 percent), a positive family history (47.6 percent), obesity (46.9 percent), a lack of physical activity (43.6 percent), and smoking (43.2 percent). Breast cancer screening, on the other hand, was uncommon (only 30 and 11.3 percent practiced clinical breast examination and mammography respectively). CONCLUSION: In this study, the knowledge on the signs and symptoms, risk factors of breast cancer - pharmacy graduates have more knowledge than the non-pharmacy graduates but in the preventive techniques and early detective tools of breast cancer -had poor knowledge in the pharmacy and non-pharmacy graduate. After the awareness program, pharmacy and non-pharmacy graduates got supportive knowledge on the preventive techniques and also practiced the early detective techniques of breast cancer.Keywords: breast cancer, mammography, KAP study, early detection
Procedia PDF Downloads 1383835 Effective Training System for Riding Posture Using Depth and Inertial Sensors
Authors: Sangseung Kang, Kyekyung Kim, Suyoung Chi
Abstract:
A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding.Keywords: posture correction, posture training, riding posture, riding simulator
Procedia PDF Downloads 4773834 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 343833 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence
Authors: Rafik Bouakkaz
Abstract:
A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle
Procedia PDF Downloads 1913832 Current and Emerging Pharmacological Treatment for Status Epilepticus in Adults
Authors: Mathew Tran, Deepa Patel, Breann Prophete, Irandokht Khaki Najafabadi
Abstract:
Status epilepticus is a neurological disorder requiring emergent control with medical therapy. Based on guideline recommendations for adults with status epilepticus, the first-line treatment is to start a benzodiazepine, as they are quick at seizure control. The second step is to initiate a non-benzodiazepine anti-epileptic drug to prevent refractory seizures. Studies show that the anti-epileptic drugs are approximately equivalent in status epilepticus control once a benzodiazepine has been given. This review provides a brief overview of the management of status epilepticus based on evidence from the literature and evidence-based guidelines.Keywords: neurological disorder, seizure, status epilepticus, benzo diazepines, antiepileptic agents
Procedia PDF Downloads 1223831 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)
Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo
Abstract:
Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop
Procedia PDF Downloads 4063830 Deleterious SNP’s Detection Using Machine Learning
Authors: Hamza Zidoum
Abstract:
This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM
Procedia PDF Downloads 3793829 Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography
Authors: Liping Qiu, Xiaofeng Zhang
Abstract:
The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9.Keywords: ion chromatography, tomb, anion (F⁻, Cl⁻, SO₄²⁻, NO₃⁻), environmental protection
Procedia PDF Downloads 1053828 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line
Procedia PDF Downloads 1803827 Genetic Diversity of Norovirus Strains in Outpatient Children from Rural Communities of Vhembe District, South Africa, 2014-2015
Authors: Jean Pierre Kabue, Emma Meader, Afsatou Ndama Traore, Paul R. Hunter, Natasha Potgieter
Abstract:
Norovirus is now considered the most common cause of outbreaks of nonbacterial gastroenteritis. Limited data are available for Norovirus strains in Africa, especially in rural and peri-urban areas. Despite the excessive burden of diarrhea disease in developing countries, Norovirus infections have been to date mostly reported in developed countries. There is a need to investigate intensively the role of viral agents associated with diarrhea in different settings in Africa continent. To determine the prevalence and genetic diversity of Norovirus strains circulating in the rural communities in the Limpopo Province, South Africa and investigate the genetic relationship between Norovirus strains, a cross-sectional study was performed on human stools collected from rural communities. Between July 2014 and April 2015, outpatient children under 5 years of age from rural communities of Vhembe District, South Africa, were recorded for the study. A total of 303 stool specimens were collected from those with diarrhea (n=253) and without (n=50) diarrhea. NoVs were identified using real-time one-step RT-PCR. Partial Sequence analyses were performed to genotype the strains. Phylogenetic analyses were performed to compare identified NoVs genotypes to the worldwide circulating strains. Norovirus detection rate was 41.1% (104/253) in children with diarrhea. There was no significant difference (OR=1.24; 95% CI 0.66-2.33) in Norovirus detection between symptomatic and asymptomatic children. Comparison of the median CT values for NoV in children with diarrhea and without diarrhea revealed significant statistical difference of estimated GII viral load from both groups, with a much higher viral burden in children with diarrhea. To our knowledge, this is the first study reporting on the differences in estimated viral load of GII and GI NoV positive cases and controls. GII.Pe (n=9) were the predominant genotypes followed by GII.Pe/GII.4 Sydney 2012 (n=8) suspected recombinant and GII.4 Sydney 2012 variants(n=7). Two unassigned GII.4 variants and an unusual RdRp genotype GII.P15 were found. With note, the rare GIIP15 identified in this study has a common ancestor with GIIP15 strain from Japan previously reported as GII/untypeable recombinant strain implicated in a gastroenteritis outbreak. To our knowledge, this is the first report of this unusual genotype in the African continent. Though not confirmed predictive of diarrhea disease in this study, the high detection rate of NoV is an indication of subsequent exposure of children from rural communities to enteric pathogens due to poor sanitation and hygiene practices. The results reveal that the difference between asymptomatic and symptomatic children with NoV may possibly be related to the NoV genogroups involved. The findings emphasize NoV genetic diversity and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An uncommon GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe District/South Africa. NoV surveillance is required to help to inform investigations into NoV evolution, and to support vaccine development programmes in Africa.Keywords: asymptomatic, common, outpatients, norovirus genetic diversity, sporadic gastroenteritis, South African rural communities, symptomatic
Procedia PDF Downloads 1963826 qPCR Method for Detection of Halal Food Adulteration
Authors: Gabriela Borilova, Monika Petrakova, Petr Kralik
Abstract:
Nowadays, European producers are increasingly interested in the production of halal meat products. Halal meat has been increasingly appearing in the EU's market network and meat products from European producers are being exported to Islamic countries. Halal criteria are mainly related to the origin of muscle used in production, and also to the way products are obtained and processed. Although the EU has legislatively addressed the question of food authenticity, the circumstances of previous years when products with undeclared horse or poultry meat content appeared on EU markets raised the question of the effectiveness of control mechanisms. Replacement of expensive or not-available types of meat for low-priced meat has been on a global scale for a long time. Likewise, halal products may be contaminated (falsified) by pork or food components obtained from pigs. These components include collagen, offal, pork fat, mechanically separated pork, emulsifier, blood, dried blood, dried blood plasma, gelatin, and others. These substances can influence sensory properties of the meat products - color, aroma, flavor, consistency and texture or they are added for preservation and stabilization. Food manufacturers sometimes access these substances mainly due to their dense availability and low prices. However, the use of these substances is not always declared on the product packaging. Verification of the presence of declared ingredients, including the detection of undeclared ingredients, are among the basic control procedures for determining the authenticity of food. Molecular biology methods, based on DNA analysis, offer rapid and sensitive testing. The PCR method and its modification can be successfully used to identify animal species in single- and multi-ingredient raw and processed foods and qPCR is the first choice for food analysis. Like all PCR-based methods, it is simple to implement and its greatest advantage is the absence of post-PCR visualization by electrophoresis. qPCR allows detection of trace amounts of nucleic acids, and by comparing an unknown sample with a calibration curve, it can also provide information on the absolute quantity of individual components in the sample. Our study addresses a problem that is related to the fact that the molecular biological approach of most of the work associated with the identification and quantification of animal species is based on the construction of specific primers amplifying the selected section of the mitochondrial genome. In addition, the sections amplified in conventional PCR are relatively long (hundreds of bp) and unsuitable for use in qPCR, because in DNA fragmentation, amplification of long target sequences is quite limited. Our study focuses on finding a suitable genomic DNA target and optimizing qPCR to reduce variability and distortion of results, which is necessary for the correct interpretation of quantification results. In halal products, the impact of falsification of meat products by the addition of components derived from pigs is all the greater that it is not just about the economic aspect but above all about the religious and social aspect. This work was supported by the Ministry of Agriculture of the Czech Republic (QJ1530107).Keywords: food fraud, halal food, pork, qPCR
Procedia PDF Downloads 2483825 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology
Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski
Abstract:
In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.Keywords: commingled fiber, consolidation heat, filament winding, voids
Procedia PDF Downloads 2673824 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 753823 A Correlational Study: Dark Triad and Self-Restraint among Criminology Students
Authors: Mary Heather Lee T. Walker, Audilon Benjamin Madamba, Mizheal Vstrechnny Vidal, Rogelio Angeles, John Rhey Banag, Lorraine Martin
Abstract:
Criminology students are the future police officers of the country that plays a major role in protecting the citizens. Their behavior must be thoroughly assessed before given a badge of responsibility. Therefore, it is important to highlight their Dark Triad that is composed of Machiavellianism, Narcissism, and Psychopathy which are considered to be controversial variables in the present while self-restraint is considered to be their way of controlling themselves especially in their line of work. The researchers used convenience and random sampling and found the respondents from a private school. Thus, the study’s aim is to determine whether there is a relationship among these variables. Machiavellianism and Psychopathy is linked to Self-Restraint except Narcissism. There are lots of factors that resulted into this.Keywords: criminology, dark triad, self-restraint, students
Procedia PDF Downloads 295