Search results for: adaptive robust rbf neural network approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7826

Search results for: adaptive robust rbf neural network approximation

4946 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 197
4945 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design

Authors: Giuseppe Timperio, Robert de Souza

Abstract:

Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.

Keywords: decision support, disaster preparedness, humanitarian logistics, network design

Procedia PDF Downloads 169
4944 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources

Procedia PDF Downloads 275
4943 Value Proposition and Value Creation in Network Environments: An Experimental Study of Academic Productivity via the Application of Bibliometrics

Authors: R. Oleko, A. Saraceni

Abstract:

The aim of this research is to provide a rigorous evaluation of the existing academic productivity in relation to value proposition and creation in networked environments. Bibliometrics is a vigorous approach used to structure existing literature in an objective and reliable manner. To that aim, a thorough bibliometric analysis was performed in order to assess the large volume of the information encountered in a structured and reliable manner. A clear distinction between networks and service networks was considered indispensable in order to capture the effects of each network’s type properties on value creation processes. Via the use of bibliometric parameters, this review was able to capture the state-of-the-art in both value proposition and value creation consecutively. The results provide a rigorous assessment of the annual scientific production, the most influential journals, and the leading corresponding author countries. By means of citation analysis, the most frequently cited manuscripts and countries for each network type were identified. Moreover, by means of co-citation analysis, existing collaborative patterns were detected through the creation of reference co-citation networks and country collaboration networks. Co-word analysis was also performed in order to provide an overview of the conceptual structure in both networks and service networks. The acquired results provide a rigorous and systematic assessment of the existing scientific output in networked settings. As such, they positively contribute to a better understanding of the distinct impact of service networks on value proposition and value creation when compared to regular networks. The implications derived can serve as a guide for informed decision-making by practitioners during network formation and provide a structured evaluation that can stand as a basis for future research in the field.

Keywords: bibliometrics, co-citation analysis, networks, service networks, value creation, value proposition

Procedia PDF Downloads 203
4942 Numerical Reproduction of Hemodynamic Change Induced by Acupuncture to ST-36

Authors: Takuya Suzuki, Atsushi Shirai, Takashi Seki

Abstract:

Acupuncture therapy is one of the treatments in traditional Chinese medicine. Recently, some reports have shown the effectiveness of acupuncture. However, its full acceptance has been hindered by the lack of understanding on mechanism of the therapy. Acupuncture applied to Zusanli (ST-36) enhances blood flow volume in superior mesenteric artery (SMA), yielding peripheral vascular resistance – regulated blood flow of SMA dominated by the parasympathetic system and inhibition of sympathetic system. In this study, a lumped-parameter approximation model of blood flow in the systemic arteries was developed. This model was extremely simple, consisting of the aorta, carotid arteries, arteries of the four limbs and SMA, and their peripheral vascular resistances. Here, the individual artery was simplified to a tapered tube and the resistances were modelled by a linear resistance. We numerically investigated contribution of the peripheral vascular resistance of SMA to the systemic blood distribution using this model. In addition to the upstream end of the model, which correlates with the left ventricle, two types of boundary condition were applied; mean left ventricular pressure which correlates with blood pressure (BP) and mean cardiac output which corresponds to cardiac index (CI). We examined it to reproduce the experimentally obtained hemodynamic change, in terms of the ratio of the aforementioned hemodynamic parameters from their initial values before the acupuncture, by regulating the peripheral vascular resistances and the upstream boundary condition. First, only the peripheral vascular resistance of SMA was changed to show contribution of the resistance to the change in blood flow volume in SMA, expecting reproduction of the experimentally obtained change. It was found, however, this was not enough to reproduce the experimental result. Then, we also changed the resistances of the other arteries together with the value given at upstream boundary. Here, the resistances of the other arteries were changed simultaneously in the same amount. Consequently, we successfully reproduced the hemodynamic change to find that regulation of the upstream boundary condition to the value experimentally obtained after the stimulation is necessary for the reproduction, though statistically significant changes in BP and CI were not observed in the experiment. It is generally known that sympathetic and parasympathetic tones take part in regulation of whole the systemic circulation including the cardiac function. The present result indicates that stimulation to ST-36 could induce vasodilation of peripheral circulation of SMA and vasoconstriction of that of other arteries. In addition, it implies that experimentally obtained small changes in BP and CI induced by the acupuncture may be involved in the therapeutic response.

Keywords: acupuncture, hemodynamics, lumped-parameter approximation, modeling, systemic vascular resistance

Procedia PDF Downloads 224
4941 An Approximation Algorithm for the Non Orthogonal Cutting Problem

Authors: R. Ouafi, F. Ouafi

Abstract:

We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern.

Keywords: combinatorial optimization, cutting problem, heuristic

Procedia PDF Downloads 541
4940 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski

Abstract:

We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 247
4939 Integrative Transcriptomic Profiling of NK Cells and Monocytes: Advancing Diagnostic and Therapeutic Strategies for COVID-19

Authors: Salma Loukman, Reda Benmrid, Najat Bouchmaa, Hicham Hboub, Rachid El Fatimy, Rachid Benhida

Abstract:

In this study, it use integrated transcriptomic datasets from the GEO repository with the purpose of investigating immune dysregulation in COVID-19. Thus, in this context, we decided to be focused on NK cells and CD14+ monocytes gene expression, considering datasets GSE165461 and GSE198256, respectively. Other datasets with PBMCs, lung, olfactory, and sensory epithelium and lymph were used to provide robust validation for our results. This approach gave an integrated view of the immune responses in COVID-19, pointing out a set of potential biomarkers and therapeutic targets with special regard to standards of physiological conditions. IFI27, MKI67, CENPF, MBP, HBA2, TMEM158, THBD, HBA1, LHFPL2, SLA, and AC104564.3 were identified as key genes from our analysis that have critical biological processes related to inflammation, immune regulation, oxidative stress, and metabolic processes. Consequently, such processes are important in understanding the heterogeneous clinical manifestations of COVID-19—from acute to long-term effects now known as 'long COVID'. Subsequent validation with additional datasets consolidated these genes as robust biomarkers with an important role in the diagnosis of COVID-19 and the prediction of its severity. Moreover, their enrichment in key pathophysiological pathways presented them as potential targets for therapeutic intervention.The results provide insight into the molecular dynamics of COVID-19 caused by cells such as NK cells and other monocytes. Thus, this study constitutes a solid basis for targeted diagnostic and therapeutic development and makes relevant contributions to ongoing research efforts toward better management and mitigation of the pandemic.

Keywords: SARS-COV-2, RNA-seq, biomarkers, severity, long COVID-19, bio analysis

Procedia PDF Downloads 12
4938 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations

Authors: Shih-Yan Chen, Shin-Shin Kao

Abstract:

In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.

Keywords: dual-cubes, dual-cube extensive networks, dual-cube-like networks, hypercubes, fault-tolerant hamiltonian property

Procedia PDF Downloads 470
4937 Split Monotone Inclusion and Fixed Point Problems in Real Hilbert Spaces

Authors: Francis O. Nwawuru

Abstract:

The convergence analysis of split monotone inclusion problems and fixed point problems of certain nonlinear mappings are investigated in the setting of real Hilbert spaces. Inertial extrapolation term in the spirit of Polyak is incorporated to speed up the rate of convergence. Under standard assumptions, a strong convergence of the proposed algorithm is established without computing the resolvent operator or involving Yosida approximation method. The stepsize involved in the algorithm does not depend on the spectral radius of the linear operator. Furthermore, applications of the proposed algorithm in solving some related optimization problems are also considered. Our result complements and extends numerous results in the literature.

Keywords: fixedpoint, hilbertspace, monotonemapping, resolventoperators

Procedia PDF Downloads 52
4936 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.

Keywords: clipping, clipped signal, speech signal processing, digital signal processing

Procedia PDF Downloads 393
4935 Establishment of Bit Selective Mode Storage Covert Channel in VANETs

Authors: Amarpreet Singh, Kimi Manchanda

Abstract:

Intended for providing the security in the VANETS (Vehicular Ad hoc Network) scenario, the covert storage channel is implemented through data transmitted between the sender and the receiver. Covert channels are the logical links which are used for the communication purpose and hiding the secure data from the intruders. This paper refers to the Establishment of bit selective mode covert storage channels in VANETS. In this scenario, the data is being transmitted with two modes i.e. the normal mode and the covert mode. During the communication between vehicles in this scenario, the controlling of bits is possible through the optional bits of IPV6 Header Format. This implementation is fulfilled with the help of Network simulator.

Keywords: covert mode, normal mode, VANET, OBU, on-board unit

Procedia PDF Downloads 366
4934 A Monitoring System to Detect Vegetation Growth along the Route of Power Overhead Lines

Authors: Eugene Eduful

Abstract:

This paper introduces an approach that utilizes a Wireless Sensor Network (WSN) to detect vegetation encroachment between segments of distribution lines. The WSN was designed and implemented, involving the seamless integration of Arduino Uno and Mega systems. This integration demonstrates a method for addressing the challenges posed by vegetation interference. The primary aim of the study is to improve the reliability of power supply in areas characterized by forested terrain, specifically targeting overhead powerlines. The experimental results validate the effectiveness of the proposed system, revealing its ability to accurately identify and locate instances of vegetation encroachment with a remarkably high degree of precision.

Keywords: wireless sensor network, vegetation encroachment, line of sight, Arduino Uno, XBEE

Procedia PDF Downloads 72
4933 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method

Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh

Abstract:

In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.

Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation

Procedia PDF Downloads 388
4932 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
4931 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol

Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani

Abstract:

Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.

Keywords: heuristics routing, intelligent routing, VANET, route optimization

Procedia PDF Downloads 178
4930 Smart Grids Cyber Security Issues and Challenges

Authors: Imen Aouini, Lamia Ben Azzouz

Abstract:

The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.

Keywords: smart grids, smart meters, home area network, neighbor area network

Procedia PDF Downloads 424
4929 Social Entrepreneurship against Depopulation: Network Analysis within the Theoretical Framework of the Quadruple Helix

Authors: Esperanza Garcia-Uceda, Josefina L. Murillo-Luna, M. Pilar Latorre-Martinez, Marta Ferrer-Serrano

Abstract:

Social entrepreneurship represents an innovation of traditional business models. During the last decade, its important role in contributing to rural and regional development has been widely recognized, due to its capacity to combat the problem of depopulation through the creation of employment. However, the success of this type of innovative business initiatives depends to a large extent on the existence of an adequate ecosystem of support resources. Based on the theoretical framework of the quadruple helix (QH), which highlights the need for collaboration between different interest groups -university, industry, government and civil society- for the development of regional innovations, in this work the network analysis is applied to study the ecosystem of resources to support social entrepreneurship in the rural area of the province of Zaragoza (Spain). It is a quantitative analysis that can be used to measure the interactions between the different actors that make up the quadruple helix, as well as the networks created between the different institutions and support organizations, through the study of the complex networks they form. The results show the importance of the involvement of local governments and the university, as key elements in the development process, but also allow identifying other issues that are susceptible to improvement.

Keywords: ecosystem of support resources, network analysis, quadruple helix, social entrepreneurship

Procedia PDF Downloads 252
4928 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding

Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang

Abstract:

As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.

Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis

Procedia PDF Downloads 35
4927 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer

Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan

Abstract:

Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.

Keywords: cervical cancer, early detection, digital Pathology, screening

Procedia PDF Downloads 178
4926 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 118
4925 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip

Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati

Abstract:

One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.

Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast

Procedia PDF Downloads 553
4924 General Time-Dependent Sequenced Route Queries in Road Networks

Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost

Abstract:

Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.

Keywords: trip planning, time dependent, sequenced route query, road networks

Procedia PDF Downloads 321
4923 Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet

Authors: Michael K. Adu, Boniface K. Alese, Olumide S. Ogunnusi

Abstract:

This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer’s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent’s application. Downloading software contents from developer’s database as in the traditional method requires a continuously open connection between the client and the developer’s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent.

Keywords: software products, software developer, internet, activation code, mobile agent

Procedia PDF Downloads 312
4922 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258
4921 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping

Authors: Adnan A. Y. Mustafa

Abstract:

In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.

Keywords: big images, binary images, image matching, image similarity

Procedia PDF Downloads 197
4920 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 338
4919 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach

Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian

Abstract:

Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.

Keywords: sustainable materials, building, analytic network process, life cycle assessment

Procedia PDF Downloads 242
4918 Creating Knowledge Networks: Comparative Analysis of Reference Cases

Authors: Sylvia Villarreal, Edna Bravo

Abstract:

Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.

Keywords: creation, knowledge management, network, stages

Procedia PDF Downloads 302
4917 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 349