Search results for: Mandarin Chinese processing
1876 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories
Authors: Berna Çalışkan
Abstract:
The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.Keywords: water resources management, hydro tool, water protection, transportation
Procedia PDF Downloads 581875 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties
Procedia PDF Downloads 1011874 The Balancing Act: India and Maldives in the Quest for Regional Prosperity
Authors: Arya S. S.
Abstract:
India is one of the powerful country in the world .India and Maldives having common interests in regional security and economic growth, this relationship has seen substantial change in recent years. This paper examines the complex dynamics of this bilateral relationship, emphasizing the careful balancing act that both countries perform in order to advance regional prosperity. It looks at historical connections, geopolitical factors, and current issues like economic cooperation, climate change, and marine security. The study highlights how India's involvement in the Maldives contributes to both bilateral ties and regional stability by examining important initiatives including trade agreements and infrastructure projects. It also discusses the effects of outside factors and the necessity for both nations to strategically manage their interests. In order to contribute to a more affluent and stable Indian Ocean area, this study ultimately seeks to shed light on how India and the Maldives may cooperate to promote sustainable development while tackling security issues. The India Maldives relation is very crucial in the regional stability of Indian ocean region. The initiatives like building infrastructure, giving financial support, and establishing the India-Maldives Friendship Bridge demonstrate India's dedication to Maldivian prosperity. In addition to boosting the Maldives' economy, these investments strengthen India's clout in the area, which is essential for preserving its maritime security interests in the face of growing Chinese dominance. Both India and China involved in a strategic tug of war in order to enhance their dominance in Maldives. There are difficulties with this collaboration including, political unrest in the Maldives has occasionally resulted in changes to foreign policy, particularly under regimes that support stronger ties with China. India has expressed concern about losing strategic footholds in the Indian Ocean as a result of China's extension of influence through debt diplomacy and infrastructure projects. India must therefore strike a balance between advancing its objectives and upholding Maldivian sovereignty as well as the goals of its people and government. In summary, the partnership between India and the Maldives is a complex balancing act that is marked by cultural links, security cooperation, and economic dependency. Both countries must negotiate the complexity of international relations as they work for regional prosperity, especially in light of both internal and external factors. India and the Maldives can strengthen their positions as key actors in the changing dynamics of the Indian Ocean by promoting cooperation and communication. This would not only protect their particular interests but also help create a stable and prosperous South Asian region.Keywords: regional security, balancing act, debt trap diplomacy, strategic tug of war
Procedia PDF Downloads 191873 Effects of Palm Kernel Expeller Processing on the Ileal Populations of Lactobacilli and Escherichia Coli in Broiler Chickens
Authors: B. Navidshad
Abstract:
The main objective of this study was to examine the effects of enzymatic treatment and shell content of palm kernel expeller (PKE) on the ileal Lactobacilli and Escherichia coli populations in broiler chickens. At the finisher phase, one hundred male broiler chickens (Cobb-500) were fed a control diet or the diets containing 200 g/kg of normal PKE (70 g/kg shell), low shell PKE (30 g/kg shell), enzymatic treated PKE or low shell-enzymatic treated PKE. The quantitative real-time PCR were used to determine the ileal bacteria populations. The lowest ileal Lactobacilli population was found in the chickens fed the low shell PKE diet. Dietary normal PKE or low shell-enzymatic treated PKE decreased the Escherichia coli population compared to the control diet. The results suggested that PKE could be included up to 200 g/kg in the finisher diet, however, any screening practice to reduce the shell content of PKE without enzymatic degradation of β-mannan, decrease ileal Lactobacilli population.Keywords: palm kernel expeller, exogenous enzyme, shell content, ileum bacteria, broiler chickens
Procedia PDF Downloads 3511872 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution
Authors: S. Sharma, Gaballa Aqeelah, Tawfig Alghbaili, Ali Elmessmari
Abstract:
There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths.Keywords: well logging, seismic data acquisition, sesimic data processing, up-holes
Procedia PDF Downloads 861871 Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite
Authors: M. D. Stelescu, E. Manaila, G. Pelin, M. Georgescu, M. Sonmez
Abstract:
This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.Keywords: chlorobutyl rubber, ethylene-propylene-diene terpolymers, montmorillonite, rubber seals, space application
Procedia PDF Downloads 1801870 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 941869 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves
Authors: K. Radha Krishnan, Mirajul Alom
Abstract:
Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.Keywords: chlorophyll, color stability, degradation kinetics, drying
Procedia PDF Downloads 4031868 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1281867 Designing an Introductory Python Course for Finance Students
Authors: Joelle Thng, Li Fang
Abstract:
Objective: As programming becomes a highly valued and sought-after skill in the economy, many universities have started offering Python courses to help students keep up with the demands of employers. This study focuses on designing a university module that effectively educates undergraduate students on financial analysis using Python programming. Methodology: To better satisfy the specific demands for each sector, this study adopted a qualitative research modus operandi to craft a module that would complement students’ existing financial skills. The lessons were structured using research-backed educational learning tools, and important Python concepts were prudently screened before being included in the syllabus. The course contents were streamlined based on criteria such as ease of learning and versatility. In particular, the skills taught were modelled in a way to ensure they were beneficial for financial data processing and analysis. Results: Through this study, a 6-week course containing the chosen topics and programming applications was carefully constructed for finance students. Conclusion: The findings in this paper will provide valuable insights as to how teaching programming could be customised for students hailing from various academic backgrounds.Keywords: curriculum development, designing effective instruction, higher education strategy, python for finance students
Procedia PDF Downloads 791866 Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade
Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma
Abstract:
Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures.Keywords: ductile-to-brittle transition temperature (DBTT), EUROFER, reduced activation ferritic/martensitic (RAFM) steels, thermal treatments
Procedia PDF Downloads 3021865 Developing Rice Disease Analysis System on Mobile via iOS Operating System
Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit
Abstract:
This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.Keywords: rice disease, data analysis system, mobile application, iOS operating system
Procedia PDF Downloads 2891864 Use of Anti-Stick to Reduce Bitterness in Ultra Filtrated Chees-es(Single Packaged)
Authors: B. Khorram, M. Taslikh, R. Sattarzadeh, M. Ghazanfari
Abstract:
Bitterness is one of the most important problems in cheese processing industry all over the world. There are several reasons that bitterness may develop in cheese. With a few exceptions bitterness is generally associated with proteolysis. In this investigation, anti-stick as a neutral substance in proteolysis were considered and studied for reducing the problem. This vast survey was conducted in a big cheese production factory (in Neyshabur) and in the same procedure anti-stick as interested factor in cheeses packaging compared to standard cheeses production, one line productions (65200 packs with anti-stick were tested by 2953 persons for bitterness and another line was included the same procedure with standard cheese. In this investigate: 83% of standard packaging cheeses, compared with only28% of consumers cheese with anti-stick which confirmed bitterness. Although bitterness is generally associated with proteolysis and Microbial factors, Somatic cell, Starters play important role in generating bitterness in ultra filtrated cheeses, but based on the results the other factors such as anti-stick in packaging can be effective methods for reducing and removing unfavorable bitterness in cheese production.Keywords: bitterness, uf cheese, anti-stick, single packaged
Procedia PDF Downloads 4721863 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function
Authors: Ahmed Noor Al-Qayyim
Abstract:
During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification
Procedia PDF Downloads 3501862 Mapping of Urban Green Spaces Towards a Balanced Planning in a Coastal Landscape
Authors: Rania Ajmi, Faiza Allouche Khebour, Aude Nuscia Taibi, Sirine Essasi
Abstract:
Urban green spaces (UGS) as an important contributor can be a significant part of sustainable development. A spatial method was employed to assess and map the spatial distribution of UGS in five districts in Sousse, Tunisia. Ecological management of UGS is an essential factor for the sustainable development of the city; hence the municipality of Sousse has decided to support the districts according to different green spaces characters. And to implement this policy, (1) a new GIS web application was developed, (2) then the implementation of the various green spaces was carried out, (3) a spatial mapping of UGS using Quantum GIS was realized, and (4) finally a data processing and statistical analysis with RStudio programming language was executed. The intersection of the results of the spatial and statistical analyzes highlighted the presence of an imbalance in terms of the spatial UGS distribution in the study area. The discontinuity between the coast and the city's green spaces was not designed in a spirit of network and connection, hence the lack of a greenway that connects these spaces to the city. Finally, this GIS support will be used to assess and monitor green spaces in the city of Sousse by decision-makers and will contribute to improve the well-being of the local population.Keywords: distributions, GIS, green space, imbalance, spatial analysis
Procedia PDF Downloads 2071861 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4611860 Impact of Sericin Treatment on Perfection Dyeing of Polyester Viscose Blend
Authors: Omaima G. Allam, O. A. Hakeim, K. Haggag, N. S. Elshemy
Abstract:
In the midst of the two decades the use of microwave dielectric warming in the field of science has transformed into a powerful methodology to redesign compound procedures. The potential benefit of the application of these modern methods of treatment emphasize so as to reach to optimum treatment conditions and the best results, especially hydrophobicity, moisture content and increase dyeing processing while maintaining the physical and chemical properties of each textile. Moreover, polyester fibres are sometimes spun together with natural fibres to produce a cloth with blended properties. So that at the present task, the polyester/viscose mix fabrics (60 /40) were pretreated with 4 g/l of KOH for 2 min in microwave irradiation with a liquor ratio 1:25. Subsequently fabrics were inundated with different concentrations of sericin (10, 30, 50 g/l). Treated fabrics were coloured with the commercial dyes samples: Reactive Red 84(Dye 1). C. I. Acid Blue 203(Dye 2) and C.I. Reactive violet 5 (Dye 3). Colour value was specified as well as fastness properties. Likewise, the physical properties of untreated and treated fabrics such as moisture content %, tensile strength, elongation % and were evaluated. The untreated and treated fabrics are described by infrared spectroscopy (FTIR) and scanning electron microscopy.Keywords: polyester viscose blends fabric, sericin, dyes, colour value
Procedia PDF Downloads 2401859 Disaster Management Using Wireless Sensor Networks
Authors: Akila Murali, Prithika Manivel
Abstract:
Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology
Procedia PDF Downloads 4051858 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 1851857 Motor Controller Implementation Using Model Based Design
Authors: Cau Tran, Tu Nguyen, Tien Pham
Abstract:
Model-based design (MBD) is a mathematical and visual technique for addressing design issues in the fields of communications, signal processing, and complicated control systems. It is utilized in several automotive, aerospace, industrial, and motion control applications. Virtual models are at the center of the software development process with model based design. A method used in the creation of embedded software is model-based design. In this study, the LAT motor is modeled in a simulation environment, and the LAT motor control is designed with a cascade structure, a speed and current control loop, and a controller that is used in the next part. A PID structure serves as this controller. Based on techniques and motor parameters that match the design goals, the PID controller is created for the model using traditional design principles. The MBD approach will be used to build embedded software for motor control. The paper will be divided into three distinct sections. The first section will introduce the design process and the benefits and drawbacks of the MBD technique. The design of control software for LAT motors will be the main topic of the next section. The experiment's results are the subject of the last section.Keywords: model based design, limited angle torque, intellectual property core, hardware description language, controller area network, user datagram protocol
Procedia PDF Downloads 961856 Design of Labview Based DAQ System
Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid
Abstract:
The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.Keywords: data acquisition, labview, signal conditioning, national instruments
Procedia PDF Downloads 4961855 Link People from Different Age Together: Attitude and Behavior Changes in Inter-Generational Interaction Program
Authors: Qian Sun, Dannie Dai, Vivian Lou
Abstract:
Background: Changes in population structure and modernization have left traditional channels of achieving intergenerational solidarity in crisis. Policies and projects purposefully structuring intergenerational interaction are regarded as effective ways to enhance positive attitude changes between generations. However, few inter-generational interaction program has put equal emphasis on promoting positive changes on both attitude and behavior across generational groups. Objective: This study evaluated the effectiveness of an intergenerational interaction program which aims to facilitate positive attitude and behavioral interaction between both young and old individuals in Hong Kong. Method: A quasi-experimental design was adopted with the sample of 150 older participants and 161 young participants. Among 73 older and 78 young participants belong to experiment groups while 77 older participants and 84 young participants belong to control groups. The Age Group Evaluation and Description scale (AGED) was adopted to measure attitude toward young people by older participants and the Chinese version of Kogan’s Attitude towards Older People (KAOP) as well as Polizzi’s refined version of the Ageing Semantic Differential Scale (ASD) were used to measure attitude toward older people by the younger generation. The interpersonal behaviour of participants was assessed using Beglgrave’s behavioural observation tool. Six primary verbal or non-verbal interpersonal behaviours including smiles, looks, touches, encourages, initiated conversations and assists were identified and observed. Findings Effectiveness of attitude and behavior changes on both younger and older participants was confirmed in results. Compared with participants from the control group, experimental participants of elderly showed significant positive changes of attitudes toward the younger generation as assessed by AGED (F=138.34, p < .001). Moreover, older participants showed significant positive changes on three out of six behaviours (visual attention: t=2.26, p<0.05; initiate conversation: t=3.42, p<0.01; and touch: t=2.28, p<0.05). For younger participants, participants from experimental group showed significant positive changes in attitude toward older people (with F-score of 47.22 for KAOP and 72.75 for ASD, p<.001). Young participants also showed significant positive changes in two out of six behaviours (visual attention: t=3.70, p<0.01; initiate conversation: t=2.04, p<0.001). There is no significant relationship between attitude change and behaviour change in both older (p=0.86) and younger (p=0.22) groups. Conclusion: This study has brought practical implications for social work. The effective model of this program could assist social workers and allied professionals to design relevant projects for nurture intergenerational solidarity. Furthermore, insignificant results between attitude and behavior changes revealed that attitude change was not a strong predictor for behavior change, hence, intergenerational programs against age-stereotype should put equal emphasis on both attitudinal and behavioral aspects.Keywords: attitude and behaviour changes, intergenerational interaction, intergenerational solidarity, program design
Procedia PDF Downloads 2451854 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1421853 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 5471852 Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin
Authors: Mehaiguene Madjid, Touhari Fadhila, Meddi Mohamed
Abstract:
The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water.Keywords: hydrological assessment, surface water resources, Cheliff, Algeria
Procedia PDF Downloads 3041851 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method
Procedia PDF Downloads 1011850 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1831849 The Effect of Social Media Influencer on Boycott Participation through Attitude toward the Offending Country in a Situational Animosity Context
Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong
Abstract:
Using surrogate boycotts as a coercive tactic to force the offending party into changing its approaches has been increasingly significant over the last several decades, and is expected to increase in the future. Research shows that surrogate boycotts are often triggered by controversial international events, and particular foreign countries serve as the offending party in the international marketplace. In other words, multinational corporations are likely to become surrogate boycott targets in overseas markets because of the animosity between their home and host countries. Focusing on the surrogate boycott triggered by a severe situation animosity, this research aims to examine how social media influencers (SMIs) serving as electronic key opinion leaders (EKOLs) in an international crisis facilitate and organize a boycott, and persuade consumers to participate in the boycott. This research suggests that SMIs could be a particularly important information source in a surrogate boycott sparked by a situation of animosity. This research suggests that under such a context, SMIs become a critical information source for individuals to enhance and update their understanding of the event because, unlike traditional media, social media serve as a platform for instant and 24-hour non-stop information access and dissemination. The Xinjiang cotton event was adopted as the research context, which was viewed as an ongoing inter-country conflict, reflecting a crisis, which provokes animosity against the West. Through online panel services, both studies recruited Mainland Chinese nationals to be respondents to the surveys. The findings show that: 1. Social media influencer message is positively related to a negative attitude toward the offending country. 2. Attitude toward the offending country is positively related to boycotting participation. To address the unexplored question – of the effect of social media influencer influence on consumer participation in boycotts, this research presents a finer-grained examination of boycott motivation, with a special focus on a situational animosity context. This research is split into two interrelated parts. In the first part, this research shows that attitudes toward the offending country can be socially constructed by the influence of social media influencers in a situational animosity context. The study results show that consumers perceive different strengths of social pressure related to various levels of influencer messages and thus exhibit different levels of attitude toward the offending country. In the second part, this research further investigates the effect of attitude toward the offending country on boycott participation. The study findings show that such attitude exacerbated the effect of social media influencer messages on boycott participation in a situation of animosity.Keywords: animosity, social media marketing, boycott, attitude toward the offending country
Procedia PDF Downloads 1141848 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis
Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu
Abstract:
Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding
Procedia PDF Downloads 1691847 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection
Procedia PDF Downloads 449