Search results for: tomato growth and yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8281

Search results for: tomato growth and yield

5431 Simulating the Dynamics of E-waste Production from Mobile Phone: Model Development and Case Study of Rwanda

Authors: Rutebuka Evariste, Zhang Lixiao

Abstract:

Mobile phone sales and stocks showed an exponential growth in the past years globally and the number of mobile phones produced each year was surpassing one billion in 2007, this soaring growth of related e-waste deserves sufficient attentions paid to it regionally and globally as long as 40% of its total weight is made from metallic which 12 elements are identified to be highly hazardous and 12 are less harmful. Different research and methods have been used to estimate the obsolete mobile phones but none has developed a dynamic model and handle the discrepancy resulting from improper approach and error in the input data. The study aim was to develop a comprehensive dynamic system model for simulating the dynamism of e-waste production from mobile phone regardless the country or region and prevail over the previous errors. The logistic model method combined with STELLA program has been used to carry out this study. Then the simulation for Rwanda has been conducted and compared with others countries’ results as model testing and validation. Rwanda is about 1.5 million obsoletes mobile phone with 125 tons of waste in 2014 with e-waste production peak in 2017. It is expected to be 4.17 million obsoletes with 351.97 tons by 2020 along with environmental impact intensity of 21times to 2005. Thus, it is concluded through the model testing and validation that the present dynamic model is competent and able deal with mobile phone e-waste production the fact that it has responded to the previous studies questions from Czech Republic, Iran, and China.

Keywords: carrying capacity, dematerialization, logistic model, mobile phone, obsolescence, similarity, Stella, system dynamics

Procedia PDF Downloads 329
5430 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 109
5429 Enhanced Anti-Dermatophytic Effect of Nanoparticles Stimulated by Laser and Cold Plasma Techniques

Authors: Salama A. Ouf, Amera A. El-Adly, Abdelaleam H. Mohamed

Abstract:

Dermatophytosis is the infection of keratinized tissues such as hair, nail and the stratum corneum of the skin by dermatophytic fungi. Infection is generally cutaneous and restricted to the non-living cornified layers because of the inability of the fungi to penetrate the deeper tissues or organs of immunocompetent hosts. In Saudi Arabia, Onychomycosis is the most frequent infection (40.3%), followed by tinea capitis (21.9%), tinea pedis (16%), tinea cruris (15.1%), and tinea corporis (6.7%). Several azole compounds have been tried to control dermatophytic infection, however, the azole-containing medicines may interfere with the activity of hepatic microsomal enzymes, sex and thyroid hormones, and testosterone biosynthesis. In this research, antibody-conjugated nanoparticles stimulated by cold plasma and laser were evaluated in vitro against some dermatophytes isolated from the common types of tinea. Different types of nanomaterials were tested but silver nanoparticles (AgNPs) were proved to be most effective against the dermatophytes under test. The use of cold plasma coupled with antibody-conjugated nano-particles has severe impact on dermatophytes where the inhibition of growth, spore germination keratinase activity was more than 88% in the case of Trichophyton rubrum, T. violaceum, Microsprum canis and M. gypseum. Complete inhibition of growth for all dermatophytes was brought about by the interaction of conjugated nanoparticles, with cold plasma and laser treatment. The in vivo test with inoculated guinea pigs achieved promising results where the recovery from the infection reached 95% in the case of M. canis –inoculated pigs treated with AgNPs pretreated with cold plasma and laser.

Keywords: cold plasma, dermatophytes, laser, silver nanoparticles

Procedia PDF Downloads 351
5428 CAP-Glycine Protein Governs Growth, Differentiation, and the Pathogenicity of Global Meningoencephalitis Fungi

Authors: Kyung-Tae Lee, Li Li Wang, Kwang-Woo Jung, Yong-Sun Bahn

Abstract:

Microtubules are involved in mechanical support, cytoplasmic organization as well as in a number of cellular processes by interacting with diverse microtubule-associated proteins (MAPs), such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A common feature of these proteins is the presence of a cytoskeleton-associated protein-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate functions of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which causes fatal meningoencephalitis globally. In this study, we identified five CAP-Gly proteins encoding genes in C. neoformans. Among these, Cgp1, encoded by CNAG_06352, has a unique domain structure that has not been reported before in other eukaryotes. Supporting the role of Cpg1 in microtubule-related functions, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer, and Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular functions of microtubules, Cgp1 also governs maintenance of membrane stability and genotoxic stress responses. Furthermore, we demonstrate that Cgp1 uniquely regulates sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Our domain analysis reveals that the CAP-Gly domain plays major roles in all the functions of Cgp1. Finally, the cgp1Δ mutant is attenuated in virulence. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation and pathogenicity of C. neoformans.

Keywords: human fungal pathogen, CAP-Glycine protein, microtubule, meningoencephalitis

Procedia PDF Downloads 304
5427 Proximate Composition and Sensory Properties of Complementary Food from Fermented Acha (Digitaria exilis), Soybean and Orange-Flesh Sweet Potato Blends

Authors: N. C. Okoronkwo, I. E. Mbaeyi-Nwaoha, C. P. Agbata

Abstract:

Childhood malnutrition is one of the most persistent public health problems throughout developing countries, including Nigeria. Demographic and Health survey data from twenty-one developing countries indicated that poor complementary feeding of children aged 6- 23 months contributes to negative growth trends. To reduce malnutrition among children in the society, formulation of complimentary food rich in essential nutrient for optimum growth and development of infants is essential. This study focused on the evaluation of complementary food produced by solid-state fermentation of Acha and Soybean using Rhizopus oligosporus (2710) and Orange-fleshed sweet potatoes (OFSP) using Lactobacillus planterum (B-41621). The raw materials were soaked separately, each in four volumes of 0.9M acetic acid for 16 hours, rinsed with clean water, steam cooked and cooled. Solid-state fermentation (SSF) was carried out by inoculating Acha and Soybean with spore suspension (1x 10⁶spores/ml) of Rhizopus oligosporus (2710) and OFSP with spore suspension (1x 106spores/ml) of Lactobacillus planterum (B-41621). Fermentation which lasted for 72hours was carried out with 24hours sampling. The samples were blended in the following ratios: Acha and soybean 100: 100 (AS), Acha/soybean and OFSP 50: 50(ASO), made into gruel and compared with a commercial infant formula (Cerelac) which served as the control (CTRL). The samples were analyzed for proximate composition using AOAC methods and sensory attributes using a hedonic scale. Results showed that moisture, crude protein, fibre and ash content increased significantly (p<0.05) as fermentation progressed, while carbohydrate and fat content decreased. The protein, moisture, fibre and ash content ranged from 17.10-19.02%, 54.97-56.27%, 7.08-7.60% and2.09-2.38%, respectively, while carbohydrate and fat content ranged from 12.95-10.21% and 5.81-4.52%, respectively. In sensory scores, there were no significant (p>0.05) difference between the average mean scores of colours, texture and consistency of the samples. The sensory score for the overall acceptability ranged from 6.20-7.80. Sample CTRL had the highest score, while sample ASO had the least score. There was no significant (p>0.05) difference between samples CTRL and AS. Solid-state fermentation improved the nutritional content and flavour of the developed complementary food, which is needed for infant growth and development.

Keywords: Complementary food, malnutrition, proximate composition, solid-state fermentation

Procedia PDF Downloads 142
5426 Culture Medium Design Based on Whey for the Growth and Bacteriocin Production of Strains of Pediococcus pentosaceus

Authors: Carolina Gutierrez-Cortes, Hector Suarez, Gustavo Buitrago

Abstract:

Bacteriocins are antimicrobial peptides produced by bacteria as a competitive strategy for substrate and habitat. Those peptides have a potential use as food biopreservatives due to their antimicrobial activity against foodborne pathogens, avoiding the use of additives that can be harmful to consumers. The industrial production of bacteriocins is currently expensive; one of the options to be competitive is the development of economic culture media, for example, with the use of agro-industrial wastes such as whey. This study evaluated the growth and production of bacteriocins from four strains: Pediococcus pentosaceus 63, Pediococcus pentosaceus 145, Pediococcus pentosaceus 146 and Pediococcus pentosaceus 147 isolated from ‘minas cheese’ (artisanal cheese made from raw milk in the state of Minas Gerais, Brazil) in order to select a strain with growth at high rates and higher antimicrobial activity against Listeria monocytogenes 104 after incubation on the culture medium designed with whey and other components. The media used were: MRS broth, modified MRS broth (using different sources of carbon and nitrogen and different amounts of micronutrients) and a culture medium designed by a factorial design using whey and other components. The final biomass concentrations of the four strains in MRS broth after 24 hours of incubation were very similar 9.25, 9.33, 9.25 and 9.22 (log CFU/mL) for P. pentosaceus 63, P. pentosaceus 145, P. pentosaceus 146 and P. pentosaceus 147 respectively. In the same assays, antimicrobial activity of 3200 AU/mL for the first three and of 12800 AU/mL for P. pentosaceus 147 were obtained. Culture of P. pentosaceus 63 on modified MRS broth, showed the effect of some sources of carbon on the activity of bacteriocin, obtaining 12800 AU/mL with dextrose and 25600 AU/mL with maltose. Cultures of P. pentosaceus 145, 146 and 147 with these same sugars presented activity of 12800 AU/mL. It was observed that the modified MRS medium using whey increased the antimicrobial activity of the strains at 16000, 6400, 16000 and 19200 AU/mL for each strain respectively, keeping the biomass at values close to 9 log units. About nitrogen sources, it was observed that the combination of peptone (10 g /L), meat extract (10 g/L) and yeast extract (5 g/L) promoted the highest activity (12800 AU/mL), and in all cases MgSO4, MnSO4, K2HPO4 and ammonium citrate at low concentrations adversely affected bacteriocin production. Because P. pentosaceus 147 showed the highest antimicrobial activity in the presence of whey, it was used to evaluate the culture medium (peptone (10 g/L), meat extract (8 g/L), yeast extract (2 g/L), Tween® 80 (1 g/L), ammonium citrate (2 g/L), sodium acetate (5 g/L), MgSO4 (0.2 g/L), MnSO4 (0.04 g/L)). With the designed medium added with whey, 9.34 log units of biomass concentration and 19200 AU/mL were achieved for P. pentosaceus 147. The above suggest that the new medium promotes the antimicrobial activity of P. pentosaceus 147 allowing the use of an economic medium using whey.

Keywords: antimicrobial activity, bacteriocins, pediococcus, whey

Procedia PDF Downloads 214
5425 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis

Authors: Pragyan Paramita Das, Vishwas N. Khatri

Abstract:

By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.

Keywords: bearing capacity, conic programming, finite elements, seismic forces

Procedia PDF Downloads 159
5424 Effect of Herbal Mineral Blend on Growth Performance of Broilers

Authors: M. Rizwan, S. Ahmad, U. Farooq, U. Mahmood, S. U. Rehman, P. Akhtar

Abstract:

This experiment was conducted to investigate the effect of supplementation of herbal and mineral mixture on growth performance of boilers. One hundred and eighty birds were randomly distributed into 6 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), commercially available herbal-mineral product FitFat™ at the rate of 150g/bag and 200g/bag, and herbal-mineral mixture at the rate of 150g/bag and herbal-mineral mixture at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of body weight gain showed significant (P < 0.05) differences in 3rd week of age (506.90g), also, feed intake showed significant (P < 0.05) results in 1st (297.22g), 3rd (936.7g) and 4th (967.8g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (1.14) and 3rd (1.74) week of age. The starter phase indicated significant (P < 0.05) differences among all treatments groups in body weight gain (902.2g), feed intake (1843.9g) and feed conversion ratio (1.78). In case of nutrient digestibility trial, results showed significant (P < 0.05) values of dry matter, crude protein, and crude fat in starter phase as 77.74%, 69.37%, and 61.18% respectively and 77.65%, 68.79% and 61.03% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of combination of herbs and mineral can increase the production performance of broilers.

Keywords: herbal blend, minerals, crop filling, nutrient digestibility, broiler

Procedia PDF Downloads 196
5423 PPRA Controls DNA Replication and Cell Growth in Escherichia Coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 50
5422 Anti-Prostate Cancer Effect of GV-1001, a Novel Gonadotropin-Releasing Hormone Receptor Ligand

Authors: Ji Won Kim, Moo Yeol Lee, Keon Wook Kang

Abstract:

GV-1001, 16 amino acid fragment of human telomerase reverse transcriptase catalytic subunit (hTERT), has been developed as an injectable cancer vaccine for many types of solid tumors showing high-level of telomerase activity. In the present study, we evaluated the anti-cancer effect of GV-1001 on androgen-receptor-positive prostate cancer. Two signaling pathways, Gs-adenylate cyclase-cAMP and Gq-IP3-Ca2+ pathways play a central role in GnRH receptor (GnRHR)-mediated activities. We found that leuprolide acetate (LA) mainly acted on Gq-mediated Ca2+ signaling, while GV-1001 preferentially acted on cAMP signaling; and both the effects were counteracted by cetrorelix, a GnRHR antagonist. We further tested whether GV-1001 affects tumor growth of human prostate cancer cells in vivo. Prostate tumor xenografts were established using LNCap, androgen receptor-positive prostate cancer cells, and the nude mice bearing tumors were subcutaneously injected with GV-1001 (0.01, 0.1, 1, 10 microg/kg/day) and LA (0.01 microg/kg/day) for 2 weeks. GV-1001 (1 and 10 microg/kg/day) significantly inhibited tumor growth of LNCap xenografts. Interestingly, mRNA expression of MMP2 and MMP9 was significantly suppressed by GV-1001 injection, but not by LA administration. Boyden chamber assay revealed that GV-1001 potently inhibited cell migration of LNCap. Our finding suggests that GV-1001 as a novel GnRHR ligand, has anti-proliferative and anti-migratory effects on androgen receptor-positive prostate cancer cells.

Keywords: GV-1001, GnRH, hTERT, prostate cancer

Procedia PDF Downloads 350
5421 Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Fancy Carp, Cyprinus carpio var. Koi

Authors: Jin Choi, Zahra Aminikhoei, Yi-Oh Kim, Sang-Min Lee

Abstract:

A 4 × 2 factorial experiment was conducted to determine the optimum dietary protein and lipid levels for juvenile fancy carp, Cyprinus carpio var. koi. Eight experimental diets were formulated to contain four protein levels (200, 300, 400, and 500 g kg-1) with two lipid levels (70 and 140 g kg-1). Triplicate groups of fish (initial weight, 12.1±0.2 g fish-1) were hand-fed the diets to apparent satiation for 8 weeks. Weight gain, daily feed intake, feed efficiency ratio and protein efficiency ratio were significantly (P < 0.0001) affected by dietary protein level, but not by dietary lipid level (P > 0.05). Weight gain and feed efficiency ratio tended to increase as dietary protein level increased up to 400 and 500 g kg-1, respectively. Daily feed intake of fish decreased with increasing dietary protein level and that of fish fed diet contained 500 g kg-1 protein was significantly lower than other fish groups. The protein efficiency ratio of fish fed 400 and 500 g kg-1 protein was lower than that of fish fed 200 and 300 g kg-1 protein. Moisture, crude protein and crude lipid contents of muscle and liver were significantly affected by dietary protein, but not by dietary lipid level (P > 0.05). The increase in dietary lipid level resulted in an increase in linoleic acid in liver and muscle paralleled with a decrease in n-3 highly unsaturated fatty acids content in muscle of fish. In considering these results, it was concluded that the diet containing 400 g kg-1 protein with 70 g kg-1 lipid level is optimal for growth and efficient feed utilization of juvenile fancy carp.

Keywords: fancy carp, dietary protein, dietary lipid, Cyprinus carpio, fatty acid

Procedia PDF Downloads 383
5420 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 138
5419 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction

Procedia PDF Downloads 285
5418 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity

Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari

Abstract:

Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.

Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol

Procedia PDF Downloads 192
5417 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 270
5416 An Evaluation on the Methodology of Manufacturing High Performance Organophilic Clay at the Most Efficient and Cost Effective Process

Authors: Siti Nur Izati Azmi, Zatil Afifah Omar, Kathi Swaran, Navin Kumar

Abstract:

Organophilic Clays, also known as Organoclays, is used as a viscosifier in Oil based Drilling fluids. Most often, Organophilic clay are produced from modified Sodium and Calcium based Bentonite. Many studies and data show that Organophilic Clay using Hectorite based clays provide the best yield and good fluid loss properties in an oil-based drilling fluid at a higher cost. In terms of the manufacturing process, the two common methods of manufacturing organophilic clays are a Wet Process and a Dry Process. Wet process is known to produce better performance product at a higher cost while Dry Process shorten the production time. Hence, the purpose of this study is to evaluate the various formulation of an organophilic clay and its performance vs. the cost, as well as to determine the most efficient and cost-effective method of manufacturing organophilic clays.

Keywords: organophilic clay, viscosifier, wet process, dry process

Procedia PDF Downloads 209
5415 Application of Mathematical Sciences to Farm Management

Authors: Fahad Suleiman

Abstract:

Agriculture has been the mainstay of the nation’s economy in Nigeria. It provides food for the ever rapidly increasing population and raw materials for the industries. People especially the rural dwellers are gainfully employed on their crop farms and small-scale livestock farms for income earning. In farming, availability of funds and time management are one of the major factors that influence the system of farming in Nigeria in which mathematical science knowledge was highly required in order for farms to be managed effectively. Farmers often applied mathematics, almost every day for a variety of tasks, ranging from measuring and weighing, to land marking. This paper, therefore, explores some of the ways math is used in farming. For instance, farmers use arithmetic variety of farm activities such as seed planting, harvesting crop, cultivation and mulching. It is also important in helping farmers to know how much their livestock weighs, how much milk their cows produce and crop yield per acres, among others.

Keywords: agriculture, application, economic, farming, mathematics

Procedia PDF Downloads 226
5414 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress

Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz

Abstract:

World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.

Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity

Procedia PDF Downloads 211
5413 Acute Effects of Local Vibration on Muscle Activation, Metabolic and Hormone Responses

Authors: Zong Yan Cai, Wen-Chyuan Chen, Chih-Min Wu

Abstract:

The purpose of this study was to investigate the acute effects of local vibration on muscle activation, metabolic and hormone responses. Totally 12 healthy, physically inactive, male adults participated in this study and completed LV exercise session. During LV exercise session, four custom-made vibrations (diameter: 20 mm; thickness: 8 mm; weight: 0.022 g) were locally placed over the belly of the thigh of each subject’s non-dominant leg in supine lying position, and subjects received 10 sets for 1 min at the frequency of 35-40Hz, with 1–2 min of rest between sets. The surface electromyography (EMG) were obtained from the vastus medialis and rectus femoris, and the subjects’ rating of perceived exertion (RPE) and heart rate (HR) were measured. EMG data, RPE values as well as HR were obtained by averaging the results of 10 sets of each exercise session. Blood samples were drawn before exercise, immediately after exercise, and 15min and 30min after exercise in each session for analysis of lactic acid (LA), growth hormone (GH), testosterone (T) and cortisol (C). The results indicated that the HR did not increase after LV (63.18±3.5 to 63.25±2.58 beat/min, p > 0.05). The average RPE values during the LV exposure were at 2.86±0.39. The root mean square % EMG values from the vastus medialis and rectus femoris were 19.02±2.19 and 8.25±2.20 respectively. There were no significant differences after acute LV exercise among LA, GH and T values as compared with baseline values (LA: 0.68±0.11 to 0.7±0.1 mmol/L; GH: 0.06±0.05 to 0.57±0.27 ng/mL; T: 551.33±46.62 to 520.42±43.78 ng/dL, p>0.05). However, the LV treatment caused a significant decrease in C values after exercise (16.56±1.05 to 11.64±1.85 nmol/L, p<0.05). In conclusion, acute LV exercise only slightly increase muscle activation which may not cause effective exercise response. However, acute LV exercise reduces C level, which may reduce the catabolic response. The probable reason might partly due to the vibration rhythmically which massage on muscles.

Keywords: cortisol, growth hormone, lactic acid, testosterone

Procedia PDF Downloads 258
5412 Immunoliposomes for Co-Delivery of Doxorubicin and Ribonucleotide Reductase M2 Sirna Inhibit of Gastric Cancer Growth

Authors: Jie Gao

Abstract:

The combination of chemotherapy with gene therapy is highly effective in cancer therapy. To achieve combined therapeutic effects in human gastric cancer over expressing EGFR, we developed targeted LPD (liposome-polycation-DNA complex) conjugated with anti-EGFR (epidermal growth factor receptor) Fab’ for co-delivery of doxorubicin (DOX) and ribonucleotide reductase M2 (RRM2) siRNA (DOX-RRM2-TLPD). The results showed that EGFR was over expressed in several gastric cancer cell lines and gastric cancer tissues. Gene Expression Omnibus (GEO) results showed that RRM2 expression was significantly higher in gastric cancer than in non-gastric cancer tissue, and RRM2 siRNA inhibited the proliferation of several gastric cancer cells, indicating that RRM2 is a candidate target for gastric cancer therapy. Confocal studies and flow cytometry showed that DOX-RRM2-TLPD delivered DOX and RRM2 siRNA to EGFR over expressing gastric cancer cells specifically and efficiently both in vitro and in vivo, resulting in enhanced therapeutic effects (cytotoxicity and apoptosis) compared with single-drug loaded or non-targeted controls, including DOX-NC-TLPD (targeted LPD co-delivering DOX and negative control siRNA), RRM2-TLPD (targeted LPD delivering RRM2 siRNA) and DOX-RRM2-NTLPD (non-targeted LPD co-delivering DOX and RRM2 siRNA). The in vivo antitumor assay showed that the average weight of the gastric cancer in mice treated with DOX-RRM2-TLPD was significantly lighter than that of mice treated with other controls. DOX-RRM2-TLPD represents an effective approach for combined therapy of gastric cancer over expressing EGFR.

Keywords: gene therapy, chemotherapy, immunoliposomes, gastric cancer

Procedia PDF Downloads 405
5411 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration

Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang

Abstract:

The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.

Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability

Procedia PDF Downloads 331
5410 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 133
5409 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry

Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn

Abstract:

The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.

Keywords: growth, partnership, selection criteria, value chain

Procedia PDF Downloads 115
5408 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple

Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 40
5407 Assessing Storage of Stability and Mercury Reduction of Freeze-Dried Pseudomonas putida within Different Types of Lyoprotectant

Authors: A. A. M. Azoddein, Y. Nuratri, A. B. Bustary, F. A. M. Azli, S. C. Sayuti

Abstract:

Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage in 4oC without vacuum. Polyethylene glycol (PEG) pre-treated freeze dry cells and broth pre-treated freeze dry cells after freeze-dry recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introduce freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 56.78% and 17.91%. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks were 26.35% and 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been growth in agar. Result from this study may be beneficial and useful as initial reference before commercialize freeze-dried P. putida.

Keywords: Pseudomonas putida, freeze-dry, PEG, tween80/Sucrose, mercury, cell viability

Procedia PDF Downloads 344
5406 Improvement of Protein Extraction From Shrimp by Product Used for Electrospinning by Applying Emerging Technologies

Authors: Mario Pérez-Won, Vilbett Briones L., Guido Trautmann, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzalez-Cavieres

Abstract:

The fishing industry generates a significant amount of shrimp byproducts, which often result in environmental contamination. Protein extraction from these by-products is a potential solution to minimize waste and revalue the by-products. To improve the extraction of proteins (by chemical method) from shrimp (Pleuroncodes monodon) by-products, the emerging technologies of ohmic heating (OH), microwaves (MW) and pulsed electric fields (PEF) were used. The results show that microwaves, electrical pulses, and ohmic heating improved performance by 28.19%, 19.25%, and 3.65%, respectively. Furthermore, conformational changes were studied by DSC and FTIR. Subsequently, the use of these proteins in electrospinning technology was evaluated. In conclusion, this study demonstrates that the application of emerging technologies, can significantly improve the extraction yield of proteins from shrimp by-products.

Keywords: electrospinning, emerging technologies, improving extraction, shrimp by-products

Procedia PDF Downloads 59
5405 Augmented Reality to Support the Design of Innovative Agroforestry Systems

Authors: Laetitia Lemiere, Marie Gosme, Gerard Subsol, Marc Jaeger

Abstract:

Agroforestry is recognized as a way of developing sustainable and resilient agriculture that can fight against climate change. However, the number of species combinations, spatial configurations, and management options for trees and crops is vast. These choices must be adapted to the pedoclimatic and socio-economic contexts and to the objectives of the farmer, who therefore needs support in designing his system. Participative design workshops are a good way to integrate the knowledge of several experts in order to design such complex systems. The design of agroforestry systems should take into account both spatial aspects (e.g., spacing of trees within the lines and between lines, tree line orientation, tree-crop distance, species spatial patterns) and temporal aspects (e.g., crop rotations, tree thinning and pruning, tree planting in the case of successional agroforestry). Furthermore, the interactions between trees and crops evolve as the trees grow. However, agroforestry design workshops generally emphasize the spatial aspect only through the use of static tokens to represent the different species when designing the spatial configuration of the system. Augmented reality (AR) may overcome this limitation, allowing to visualize dynamic representations of trees and crops, and also their interactions, while at the same time retaining the possibility to physically interact with the system being designed (i.e., move trees, add or remove species, etc.). We propose an ergonomic digital solution capable of assisting a group of agroforestry experts to design an agroforestry system and to represent it. We investigated the use of web-based marker-based AR that does not require specific hardware and does not require specific installation so that all users could use their own smartphones right out of the pocket. We developed a prototype mobilizing the AR.js, ArToolKit.js, and Three.js open source libraries. In our implementation, we gradually build a virtual agroforestry system pattern scene from the users' interactions. A specific set of markers initialize the scene properties, and the various plant species are added and located during the workshop design session. The full virtual scene, including the trees positions with their neighborhood, are saved for further uses, such as virtual, augmented instantiation in the farmer fields. The number of tree species available in the application is gradually increasing; we mobilize 3D digital models for walnut, poplar, wild cherry, and other popular species used in agroforestry systems. The prototype allows shadow computations and the representation of trees at various growth stages, as well as different tree generations, and is thus able to visualize the dynamics of the system over time. Future work will focus on i) the design of complex patterns mobilizing several tree/shrub organizations, not restricted to lines; ii) the design of interfaces related to cultural practices, such as clearing or pruning; iii) the representation of tree-crop interactions. Beside tree shade (light competition), our objective is to represent also below-ground competitions (water, nitrogen) or other variables of interest for the design of agroforestry systems (e.g., predicted crop yield).

Keywords: agroforestry system design, augmented reality, marker-based AR, participative design, web-based AR

Procedia PDF Downloads 155
5404 Sustainable Housing in Steel: Prospects for Future World of Developing Countries

Authors: Poorva Kulkarni

Abstract:

Developing countries are having significant additions to existing population of urban areas with loads of migrants from rural areas. There is a tremendous need to provide accommodation facility to cater to rapidly growing urban population. This leads to unprecedented growth in urban areas since the temporary shelters are constructed with any available material. Architecture in a broader sense serves to humanity in terms of making life of people happy and comfortable by providing comfortable shelters. It is also the need of the time for an architect to be extremely sensitive towards nature by providing design solution of human shelters with minimum impact on the environment. The sensitive approach towards designing of housing units and provision of comfortable and affordable housing units should go hand in hand for future growth of developing countries. Steel has proved itself a versatile material in terms of strength, uniformity and ease of operation and many such other advantages. Steel can be used as the most promising material for modern construction practices. The current research paper focuses on how effectively steel can be used probably in combination with other construction material to achieve the mentioned objectives for sustainable housing. The research available on sustainable housing in steel is studied along with few case studies of buildings with the efficient use of steel providing a solution with affordability and minimum harm to the environment. The research will conclude the effective solutions exploring possibilities of use of steel for sustainable housing units. The researcher shows how the use of steel in combination with other materials for human shelters can promote sustainable housing for community living which is the need of the time.

Keywords: community living, steel, sustainable housing, urban area

Procedia PDF Downloads 216
5403 Weak Electric Fields Enhance Growth and Nutritional Quality of Kale

Authors: So-Ra Lee, Myung-Min Oh

Abstract:

Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240).

Keywords: electroculture, electric signal, faraday cage, electric field

Procedia PDF Downloads 278
5402 Effect of a Single Injection of hCG on Testosterone Concentration in Male Alpacas

Authors: A. ElZawam, D. McLean, A. Tibary

Abstract:

In alpaca, age at puberty is variable and the factors regulating the pattern of puberty and sexual maturation are a subject of controversy. Plasma testosterone level is often used as an indicator of sexual maturity. Our hypothesis is that hCG treatment will cause an increase in testosterone level that is correlated with animal age. The specific aim was to investigate the testicular tissue response to a single hCG injection by monitoring the serum testosterone concentration. Eighty four (n=84) males ranging in age from 6 to 60 months were used. Alpacas were grouped based on their ages into 15 groups. Each group had three to five male animals. Blood samples were collected from the jugular vein before treatment with hCG and 2 hours after intravenous administration of 3000 IU of hCG (Chorulon®). The serum was harvested and stored at -20ºC until the analysis. The effect of age on basal testosterone level and response to hCG treatment was evaluated by Analysis of Variance. As a result, basal serum testosterone concentrations were very low (<0.1ng/ml) until 9 months of age. Although basal serum testosterone concentrations increased steadily with age there was a significant variation amongst males within the same age group. Administration of 3000 IU of hCG, resulted in an average increase of 50% (P<0.05) in serum testosterone concentration after 2 hours. The percentage increase in serum testosterone in response to hCG stimulation varied from 51 to 81%. There was no correlation between the degree of response and age. However, the response to hCG injection presented two modes of increase depending on the age of animals. The first mode occurred at ages 9 to 14 months and the second mode was observed between 22 and 36 months. In conclusion, our results suggest that testicular growth and sensitivity to LH stimulation may be bimodal in the male alpaca with a rapid increase in growth and sensitivity between 9 and 14 months of age and a second phase of increased responsiveness after 21 months of ages.

Keywords: alpaca, testosterone, hCG, animal science

Procedia PDF Downloads 557