Search results for: project classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7080

Search results for: project classification

4230 A Network-Theorical Perspective on Music Analysis

Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria

Abstract:

The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.

Keywords: computational musicology, mathematical music modelling, music analysis, style classification

Procedia PDF Downloads 102
4229 Bio-Psycho-Social Consequences and Effects in Fall-Efficacy Scale in Seniors Using Exercise Intervention of Motor Learning According to Yoga Techniques

Authors: Milada Krejci, Martin Hill, Vaclav Hosek, Dobroslava Jandova, Jiri Kajzar, Pavel Blaha

Abstract:

The paper declares effects of exercise intervention of the research project “Basic research of balance changes in seniors”, granted by the Czech Science Foundation. The objective of the presented study is to define predictors, which influence bio-psycho-social consequences and effects of balance ability in senior 65 years old and above. We focused on the Fall-Efficacy Scale changes evaluation in seniors. Comprehensive hypothesis of the project declares, that motion uncertainty (dyskinesia) can negatively affect the well-being of a senior in bio-psycho-social context. In total, random selection and testing of 100 seniors (30 males, 70 females) from Prague and Central Bohemian region was provided. The sample was divided by stratified random selection into experimental and control groups, who underwent input and output testing. For diagnostics the methods of Medical Anamnesis, Functional anthropological examinations, Tinetti Balance Assessment Tool, SF-36 Health Survey, Anamnestic comparative self-assessment scale were used. Intervention method called "Life in Balance" based on yoga techniques was applied in four-week cycle. Results of multivariate regression were verified by repeated measures ANOVA: subject factor, phase of intervention (between-subject factor), body fluid (within-subject factor) and phase of intervention × body fluid interaction). ANOVA was performed with a repetition involving the factors of subjects, experimental/control group, phase of intervention (independent variable), and x phase interaction followed by Bonferroni multiple comparison assays with a test strength of at least 0.8 on the probability level p < 0.05. In the paper results of the first-year investigation of the three years running project are analysed. Results of balance tests confirmed no significant difference between females and males in pre-test. Significant improvements in balance and walking ability were observed in experimental group in females comparing to males (F = 128.4, p < 0.001). In the females control group, there was no significant change in post- test, while in the female experimental group positive changes in posture and spine flexibility in post-tests were found. It seems that females even in senior age react better to incentives of intervention in balance and spine flexibility. On the base of results analyses, we can declare the significant improvement in social balance markers after intervention in the experimental group (F = 10.5, p < 0.001). In average, seniors are used to take four drugs daily. Number of drugs can contribute to allergy symptoms and balance problems. It can be concluded that static balance and walking ability of seniors according Tinetti Balance scale correlate significantly with psychic and social monitored markers.

Keywords: exercises, balance, seniors 65+, health, mental and social balance

Procedia PDF Downloads 137
4228 Identifying Risk Factors for Readmission Using Decision Tree Analysis

Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka

Abstract:

This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.

Keywords: decision tree, hospital, internal medicine, readmission

Procedia PDF Downloads 256
4227 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 294
4226 Exercise and Social Activities for Elderly with an Impairment Who Are Living Alone in the Community: Effects and Influencing Factors of a Dutch Program

Authors: Renate Verkaik, Mieke Rijken, Hennie Boeije

Abstract:

Elderly who are living alone and who are having one or more impairments are vulnerable for a loss of wellbeing and institutionalization. Physical exercise and social activities together with peers have the potential to make them more resilient. The Dutch program ‘More Resilience, Longer at Home’ initiated by FNO funded 126 local projects to stimulate vulnerable older citizens to participate in exercise and social activities, and as such to improve wellbeing and independent living. The program evaluation addressed the following questions: (1) what are the effects of the program on older (65+) participants exercise behavior, social activities and what is the relationship with wellbeing?, (2) which factors contribute to successful implementation of the projects and their outcomes? A mixed method approach was used. Effects on participants were assessed with a short survey, containing questions on exercise, social engagement, daily functioning, loneliness and life satisfaction. Results of the participants were compared with those of a reference group from the Dutch national population. Perceived influencing factors were investigated with a questionnaire for project leaders. This questionnaire was based on site visits and interviews with project leaders, volunteers and participating elderly. Preliminary results show that social engagement of the participating elderly rises significantly (p ≤ .05) as do their exercise levels and daily functioning. They experience less social loneliness, but not less emotional loneliness. Additionally, there is a positive association between daily functioning and life satisfaction and between exercise and life satisfaction. Perceived influencing factors that contribute to successful implementation of the projects can be categorized in 4 types: (1) characteristics of the activities; (2) profiles of the involved staff (professionals and volunteers), (3) characteristics of the organization, (4) the social political environment. Conclusions are that local projects have been successful in stimulating older citizens to participate in exercise and social activities. Multiple factors need to be addressed to ensure sustainability and scaling-up of the good practices.

Keywords: elderly living alone in the community, exercise and social activities, resilience, quality of life

Procedia PDF Downloads 136
4225 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
4224 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region

Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher

Abstract:

The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.

Keywords: irrigation suitability, TDS, salinity, SAR

Procedia PDF Downloads 372
4223 Media in Architecture-Intervention and Visual Experience in Religious Space

Authors: Jorge Duarte de Sá

Abstract:

The appearance of the new media technologies has opened new fields of intervention in architecture creating a new dynamic communication in the relationship between public and space, where are present technological devices that enable a new sensory experience, aesthetic and even spiritual. This connection makes relevant the idea of rehabilitate architectonic spaces with new media technologies such as sacred spaces. This research aims to create a media project integrated in sacred spaces that combine Architecture, Art and New Technologies, exploring new perspectives and different dynamics in space.

Keywords: media, architecture, religious spaces, projections, contemplation

Procedia PDF Downloads 350
4222 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
4221 Identification of Architectural Design Error Risk Factors in Construction Projects Using IDEF0 Technique

Authors: Sahar Tabarroki, Ahad Nazari

Abstract:

The design process is one of the most key project processes in the construction industry. Although architects have the responsibility to produce complete, accurate, and coordinated documents, architectural design is accompanied by many errors. A design error occurs when the constraints and requirements of the design are not satisfied. Errors are potentially costly and time-consuming to correct if not caught early during the design phase, and they become expensive in either construction documents or in the construction phase. The aim of this research is to identify the risk factors of architectural design errors, so identification of risks is necessary. First, a literature review in the design process was conducted and then a questionnaire was designed to identify the risks and risk factors. The questions in the form of the questionnaire were based on the “similar service description of study and supervision of architectural works” published by “Vice Presidency of Strategic Planning & Supervision of I.R. Iran” as the base of architects’ tasks. Second, the top 10 risks of architectural activities were identified. To determine the positions of possible causes of risks with respect to architectural activities, these activities were located in a design process modeled by the IDEF0 technique. The research was carried out by choosing a case study, checking the design drawings, interviewing its architect and client, and providing a checklist in order to identify the concrete examples of architectural design errors. The results revealed that activities such as “defining the current and future requirements of the project”, “studies and space planning,” and “time and cost estimation of suggested solution” has a higher error risk than others. Moreover, the most important causes include “unclear goals of a client”, “time force by a client”, and “lack of knowledge of architects about the requirements of end-users”. For error detecting in the case study, lack of criteria, standards and design criteria, and lack of coordination among them, was a barrier, anyway, “lack of coordination between architectural design and electrical and mechanical facility”, “violation of the standard dimensions and sizes in space designing”, “design omissions” were identified as the most important design errors.

Keywords: architectural design, design error, risk management, risk factor

Procedia PDF Downloads 130
4220 Developing a SOA-Based E-Healthcare Systems

Authors: Hend Albassam, Nouf Alrumaih

Abstract:

Nowadays we are in the age of technologies and communication and there is no doubt that technologies such as the Internet can offer many advantages for many business fields, and the health field is no execution. In fact, using the Internet provide us with a new path to improve the quality of health care throughout the world. The e-healthcare offers many advantages such as: efficiency by reducing the cost and avoiding duplicate diagnostics, empowerment of patients by enabling them to access their medical records, enhancing the quality of healthcare and enabling information exchange and communication between healthcare organizations. There are many problems that result from using papers as a way of communication, for example, paper-based prescriptions. Usually, the doctor writes a prescription and gives it to the patient who in turn carries it to the pharmacy. After that, the pharmacist takes the prescription to fill it and give it to the patient. Sometimes the pharmacist might find difficulty in reading the doctor’s handwriting; the patient could change and counterfeit the prescription. These existing problems and many others heighten the need to improve the quality of the healthcare. This project is set out to develop a distributed e-healthcare system that offers some features of e-health and addresses some of the above-mentioned problems. The developed system provides an electronic health record (EHR) and enables communication between separate health care organizations such as the clinic, pharmacy and laboratory. To develop this system, the Service Oriented Architecture (SOA) is adopted as a design approach, which helps to design several independent modules that communicate by using web services. The layering design pattern is used in designing each module as it provides reusability that allows the business logic layer to be reused by different higher layers such as the web service or the website in our system. The experimental analysis has shown that the project has successfully achieved its aims toward solving the problems related to the paper-based healthcare systems and it enables different health organization to communicate effectively. It implements four independent modules including healthcare provider, pharmacy, laboratory and medication information provider. Each module provides different functionalities and is used by a different type of user. These modules interoperate with each other using a set of web services.

Keywords: e-health, services oriented architecture (SOA), web services, interoperability

Procedia PDF Downloads 305
4219 Automated Detection of Women Dehumanization in English Text

Authors: Maha Wiss, Wael Khreich

Abstract:

Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.

Keywords: gender bias, machine learning, NLP, women dehumanization

Procedia PDF Downloads 80
4218 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
4217 Strategies for Urban-Architectural Design for the Sustainable Recovery of the Huayla Stuary in Puerto Bolivar, Machala-Ecuador

Authors: Soledad Coronel Poma, Lorena Alvarado Rodriguez

Abstract:

The purpose of this project is to design public space through urban-architectural strategies that help to the sustainable recovery of the Huayla estuary and the revival of tourism in this area. This design considers other sustainable and architectural ideas used in similar cases, along with national and international regulations for saving shorelines in danger. To understand the situation of this location, Puerto Bolivar is the main port of the Province of El Oro and of the south of the country, where 90,000 national and foreign tourists pass through all year round. For that reason, a physical-urban, social, and environmental analysis of the area was carried out through surveys and conversations with the community. This analysis showed that around 70% of people feel unsatisfied and concerned about the estuary and its surroundings. Crime, absence of green areas, bad conservation of shorelines, lack of tourists, poor commercial infrastructure, and the spread of informal commerce are the main issues to be solved. As an intervention project whose main goal is that residents and tourists have contact with native nature and enjoy doing local activities, three main strategies: mobility, ecology, and urban –architectural are proposed to recover the estuary and its surroundings. First of all, the design of this public space is based on turning the estuary location into a linear promenade that could be seen as a tourist corridor, which would help to reduce pollution, increase green spaces and improve tourism. Another strategy aims to improve the economy of the community through some local activities like fishing and sailing and the commerce of fresh seafood, both raw products and in restaurants. Furthermore, in support of the environmental approach, some houses are rebuilt as sustainable houses using local materials and rearranged into blocks closer to the commercial area. Finally, the planning incorporates the use of many plants such as palms, sameness trees, and mangroves around the area to encourage people to get in touch with nature. The results of designing this space showed an increase in the green area per inhabitant index. It went from 1.69 m²/room to 10.48 m²/room, with 12 096 m² of green corridors and the incorporation of 5000 m² of mangroves at the shoreline. Additionally, living zones also increased with the creation of green areas taking advantage of the existing nature and implementing restaurants and recreational spaces. Moreover, the relocation of houses and buildings helped to free estuary's shoreline, so people are now in more comfortable places closer to their workplaces. Finally, dock spaces are increased, reaching the capacity of the boats and canoes, helping to organize the area in the estuary. To sum up, this project searches the improvement of the estuary environment with its shoreline and surroundings that include the vegetation, infrastructure and people with their local activities, achieving a better quality of life, attraction of tourism, reduction of pollution and finally getting a full recovered estuary as a natural ecosystem.

Keywords: recover, public space, stuary, sustainable

Procedia PDF Downloads 147
4216 Creating and Questioning Research-Oriented Digital Outputs to Manuscript Metadata: A Case-Based Methodological Investigation

Authors: Diandra Cristache

Abstract:

The transition of traditional manuscript studies into the digital framework closely affects the methodological premises upon which manuscript descriptions are modeled, created, and questioned for the purpose of research. This paper intends to explore the issue by presenting a methodological investigation into the process of modeling, creating, and questioning manuscript metadata. The investigation is founded on a close observation of the Polonsky Greek Manuscripts Project, a collaboration between the Universities of Cambridge and Heidelberg. More than just providing a realistic ground for methodological exploration, along with a complete metadata set for computational demonstration, the case study also contributes to a broader purpose: outlining general methodological principles for making the most out of manuscript metadata by means of research-oriented digital outputs. The analysis mainly focuses on the scholarly approach to manuscript descriptions, in the specific instance where the act of metadata recording does not have a programmatic research purpose. Close attention is paid to the encounter of 'traditional' practices in manuscript studies with the formal constraints of the digital framework: does the shift in practices (especially from the straight narrative of free writing towards the hierarchical constraints of the TEI encoding model) impact the structure of metadata and its capability to respond specific research questions? It is argued that flexible structure of TEI and traditional approaches to manuscript description lead to a proliferation of markup: does an 'encyclopedic' descriptive approach ensure the epistemological relevance of the digital outputs to metadata? To provide further insight on the computational approach to manuscript metadata, the metadata of the Polonsky project are processed with techniques of distant reading and data networking, thus resulting in a new group of digital outputs (relational graphs, geographic maps). The computational process and the digital outputs are thoroughly illustrated and discussed. Eventually, a retrospective analysis evaluates how the digital outputs respond to the scientific expectations of research, and the other way round, how the requirements of research questions feed back into the creation and enrichment of metadata in an iterative loop.

Keywords: digital manuscript studies, digital outputs to manuscripts metadata, metadata interoperability, methodological issues

Procedia PDF Downloads 140
4215 Transforming Emergency Care: Revolutionizing Obstetrics and Gynecology Operations for Enhanced Excellence

Authors: Lolwa Alansari, Hanen Mrabet, Kholoud Khaled, Abdelhamid Azhaghdani, Sufia Athar, Aska Kaima, Zaineb Mhamdia, Zubaria Altaf, Almunzer Zakaria, Tamara Alshadafat

Abstract:

Introduction: The Obstetrics and Gynecology Emergency Department at Alwakra Hospital has faced significant challenges, which have been further worsened by the impact of the COVID-19 pandemic. These challenges involve issues such as overcrowding, extended wait times, and a notable surge in demand for emergency care services. Moreover, prolonged waiting times have emerged as a primary factor contributing to situations where patients leave without receiving attention, known as left without being seen (LWBS), and unexpectedly abscond. Addressing the issue of insufficient patient mobility in the obstetrics and gynecology emergency department has brought about substantial improvements in patient care, healthcare administration, and overall departmental efficiency. These changes have not only alleviated overcrowding but have also elevated the quality of emergency care, resulting in higher patient satisfaction, better outcomes, and operational rewards. Methodology: The COVID-19 pandemic has served as a catalyst for substantial transformations in the obstetrics and gynecology emergency, aligning seamlessly with the strategic direction of Hamad Medical Corporation (HMC). The fundamental aim of this initiative is to revolutionize the operational efficiency of the OB-GYN ED. To accomplish this mission, a range of transformations has been initiated, focusing on essential areas such as digitizing systems, optimizing resource allocation, enhancing budget efficiency, and reducing overall costs. The project utilized the Plan-Do-Study-Act (PDSA) model, involving a diverse team collecting baseline data and introducing throughput improvements. Post-implementation data and feedback were analysed, leading to the integration of effective interventions into standard procedures. These interventions included optimized space utilization, real-time communication, bedside registration, technology integration, pre-triage screening, enhanced communication and patient education, consultant presence, and a culture of continuous improvement. These strategies significantly reduced waiting times, enhancing both patient care and operational efficiency. Results: Results demonstrated a substantial reduction in overall average waiting time, dropping from 35 to approximately 14 minutes by August 2023. The wait times for priority 1 cases have been reduced from 22 to 0 minutes, and for priority 2 cases, the wait times have been reduced from 32 to approximately 13.6 minutes. The proportion of patients spending less than 8 hours in the OB ED observation beds rose from 74% in January 2022 to over 98% in 2023. Notably, there was a remarkable decrease in LWBS and absconded patient rates from 2020 to 2023. Conclusion: The project initiated a profound change in the department's operational environment. Efficiency became deeply embedded in the unit's culture, promoting teamwork among staff that went beyond the project's original focus and had a positive influence on operations in other departments. This effectiveness not only made processes more efficient but also resulted in significant cost reductions for the hospital. These cost savings were achieved by reducing wait times, which in turn led to fewer prolonged patient stays and reduced the need for additional treatments. These continuous improvement initiatives have now become an integral part of the Obstetrics and Gynecology Division's standard operating procedures, ensuring that the positive changes brought about by the project persist and evolve over time.

Keywords: overcrowding, waiting time, person centered care, quality initiatives

Procedia PDF Downloads 65
4214 Vector-Based Analysis in Cognitive Linguistics

Authors: Chuluundorj Begz

Abstract:

This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.

Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space

Procedia PDF Downloads 519
4213 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 331
4212 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 32
4211 Robotic Arm Allowing a Diabetic Quadriplegic Patient to Self-Administer Insulin

Authors: L. Parisi

Abstract:

A method which allows a diabetic quadriplegic patient that has had four limb amputations (above the knee and elbow) to self-administer injections of insulin has been designed. The aim of this research project is to improve a quadriplegic patient’s self-management, affected by diabetes, by designing a suitable device for self-administering insulin.The quadriplegic patient affected by diabetes has to be able to self-administer insulin safely and independently to guarantee stable healthy conditions. The device also should be designed to adapt to a number of different varying personal characteristics such as height and body weight.

Keywords: robotic arm, self-administration, insulin, diabetes, quadriplegia

Procedia PDF Downloads 372
4210 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems

Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun

Abstract:

Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.

Keywords: application management, hardware management, power electronics, building blocks

Procedia PDF Downloads 521
4209 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing

Procedia PDF Downloads 141
4208 Net Zero Energy Schools: The Starting Block for the Canadian Energy Neutral K-12 Schools

Authors: Hamed Hakim, Roderic Archambault, Charles J. Kibert, Maryam Mirhadi Fard

Abstract:

Changes in the patterns of life in the late 20th and early 21st century have created new challenges for educational systems. Greening the physical environment of school buildings has emerged as a response to some of those challenges and led to the design of energy efficient K-12 school buildings. With the advancement in knowledge and technology, the successful construction of Net Zero Energy Schools, such as the Lady Bird Johnson Middle School demonstrates a cutting edge generation of sustainable schools, and solves the former challenge of attaining energy self-sufficient educational facilities. There are approximately twenty net zero energy K-12 schools in the U.S. of which about six are located in Climate Zone 5 and 6 based on ASHRAE climate zone classification. This paper aims to describe and analyze the current status of energy efficient and NZE schools in Canada. An attempt is made to study existing U.S. energy neutral strategies closest to the climate zones in Canada (zones 5 and 6) and identify the best practices for Canadian schools.

Keywords: Canada K-12 schools, green school, energy efficient, net-zero energy schools

Procedia PDF Downloads 404
4207 Corporate Governance and Corporate Sustainability: Evidence from a Developing Country

Authors: Edmund Gyimah

Abstract:

Using data from 146 annual reports of listed firms in Ghana for the period 2013-2020, this study presents indicative findings which inspire practical actions and future research. Firms which prepared and presented sustainability reports were excluded from this study for a coverage of corporate sustainability disclosures centred on annual reports. Also, corporate sustainability disclosures of the firms on corporate websites were not included in the study considering the tendency of updates which cannot easily be traced. The corporate sustainability disclosures in the annual reports since the commencement of the G4 Guidelines in 2013 have been below average for all the dimensions of sustainability and the general sustainability disclosures. Few traditional elements of the board composition such as board size and board independence could affect the corporate sustainability disclosures in the annual reports as well as the age of the firm, firm size, and industry classification of the firm. Sustainability disclosures are greater in sustainability reports than in annual reports, however, firms without sustainability reports should have a considerable amount of sustainability disclosures in their annual reports. Also, because of the essence of sustainability, this study suggests to firms to have sustainability committee perhaps, they could make a difference in disclosing the enough sustainability information even when they do not present sustainability information in stand-alone reports.

Keywords: disclosures, sustainability, board, reports

Procedia PDF Downloads 188
4206 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 148
4205 A Framework Based Blockchain for the Development of a Social Economy Platform

Authors: Hasna Elalaoui Elabdallaoui, Abdelaziz Elfazziki, Mohamed Sadgal

Abstract:

Outlines: The social economy is a moral approach to solidarity applied to the projects’ development. To reconcile economic activity and social equity, crowdfunding is as an alternative means of financing social projects. Several collaborative blockchain platforms exist. It eliminates the need for a central authority or an inconsiderate middleman. Also, the costs for a successful crowdfunding campaign are reduced, since there is no commission to be paid to the intermediary. It improves the transparency of record keeping and delegates authority to authorities who may be prone to corruption. Objectives: The objectives are: to define a software infrastructure for projects’ participatory financing within a social and solidarity economy, allowing transparent, secure, and fair management and to have a financial mechanism that improves financial inclusion. Methodology: The proposed methodology is: crowdfunding platforms literature review, financing mechanisms literature review, requirements analysis and project definition, a business plan, Platform development process and implementation technology, and testing an MVP. Contributions: The solution consists of proposing a new approach to crowdfunding based on Islamic financing, which is the principle of Mousharaka inspired by Islamic financing, which presents a financial innovation that integrates ethics and the social dimension into contemporary banking practices. Conclusion: Crowdfunding platforms need to secure projects and allow only quality projects but also offer a wide range of options to funders. Thus, a framework based on blockchain technology and Islamic financing is proposed to manage this arbitration between quality and quantity of options. The proposed financing system, "Musharaka", is a mode of financing that prohibits interests and uncertainties. The implementation is offered on the secure Ethereum platform as investors sign and initiate transactions for contributions using their digital signature wallet managed by a cryptography algorithm and smart contracts. Our proposal is illustrated by a crop irrigation project in the Marrakech region.

Keywords: social economy, Musharaka, blockchain, smart contract, crowdfunding

Procedia PDF Downloads 77
4204 Contact Zones and Fashion Hubs: From Circular Economy to Circular Neighbourhoods

Authors: Tiziana Ferrero-Regis, Marissa Lindquist

Abstract:

Circular Economy (CE) is increasingly seen as the reorganisation of production and consumption, and cities are acknowledged as the sources of many ecological and social problems; at the same time, they can be re-imagined through an ecologically and socially resilient future. The concept of the CE has received pointed critiques for its techno-deterministic orientation, focus on science and transformation by the policy. At the heart of our local re-imagining of the CE into circularity through contact zones there is the acknowledgment of collective, spontaneous and shared imaginations of alternative and sustainable futures through the creation of networks of community initiatives that are transformative, creating opportunities that simultaneously make cities rich and enrich humans. This paper presents a mapping project of the fashion and textile ecosystem in Brisbane, Queensland, Australia. Brisbane is currently the most aspirational city in Australia, as its population growth rate is the highest in the country. Yet, Brisbane is considered the least “fashion city” in the country. In contrast, the project revealed a greatly enhanced picture of distinct fashion and textile clusters across greater Brisbane and the adjacency of key services that may act to consolidate CE community contact zones. Clusters to the north of Brisbane and several locales to the south are zones of a greater mix between public/social amenities, walkable zones and local transport networks with educational precincts, community hubs, concentration of small enterprises, designers, artisans and waste recovery centers that will help to establish knowledge of key infrastructure networks that will support enmeshing these zones together. The paper presents two case studies of independent designers who work on new and re-designed clothing through recovering pre-consumer textiles and that operate from within creative precincts. The first case is designer Nelson Molloy, who recently returned to the inner city suburb of West End with their Chasing Zero Design project. The area was known in the 1980s and 1990s for its alternative lifestyle with creative independent production, thrifty clothing shops, alternative fashion and a socialist agenda. After 30 years of progressive gentrification of the suburb, which has dislocated many of the artists, designers and artisans, West End is seeing the return and amplification of clusters of artisans, artists, designers and architects. The other case study is Practice Studio, located in a new zone of creative growth, Bowen Hills, north of the CBD. Practice Studio combines retail with a workroom, offers repair and remaking services, becoming a point of reference for young and emerging Australian designers and artists. The paper demonstrates the spatial politics of the CE and the way in which new cultural capital is produced thanks to cultural specificities and resources. It argues for the recognition of contact zones that are created by local actors, communities and knowledge networks, whose grass-roots agency is fundamental for the co-production of CE’s systems of local governance.

Keywords: contact zones, circular citities, fashion and textiles, circular neighbourhoods, australia

Procedia PDF Downloads 100
4203 Analysis of the Production Time in a Pharmaceutical Company

Authors: Hanen Khanchel, Karim Ben Kahla

Abstract:

Pharmaceutical companies are facing competition. Indeed, the price differences between competing products can be such that it becomes difficult to compensate them by differences in value added. The conditions of competition are no longer homogeneous for the players involved. The price of a product is a given that puts a company and its customer face to face. However, price fixing obliges the company to consider internal factors relating to production costs and external factors such as customer attitudes, the existence of regulations and the structure of the market on which the firm evolved. In setting the selling price, the company must first take into account internal factors relating to its costs: costs of production fall into two categories, fixed costs and variable costs that depend on the quantities produced. The company cannot consider selling below what it costs the product. It, therefore, calculates the unit cost of production to which it adds the unit cost of distribution, enabling it to know the unit cost of production of the product. The company adds its margin and thus determines its selling price. The margin is used to remunerate the capital providers and to finance the activity of the company and its investments. Production costs are related to the quantities produced: large-scale production generally reduces the unit cost of production, which is an asset for companies with mass production markets. This shows that small and medium-sized companies with limited market segments need to make greater efforts to ensure their profit margins. As a result, and faced with high and low market prices for raw materials and increasing staff costs, the company must seek to optimize its production time in order to reduce loads and eliminate waste. Then, the customer pays only value added. Thus, and based on this principle we decided to create a project that deals with the problem of waste in our company, and having as objectives the reduction of production costs and improvement of performance indicators. This paper presents the implementation of the Value Stream Mapping (VSM) project in a pharmaceutical company. It is structured as follows: 1) determination of the family of products, 2) drawing of the current state, 3) drawing of the future state, 4) action plan and implementation.

Keywords: VSM, waste, production time, kaizen, cartography, improvement

Procedia PDF Downloads 150
4202 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 416
4201 Calculate Product Carbon Footprint through the Internet of Things from Network Science

Authors: Jing Zhang

Abstract:

To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.

Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment

Procedia PDF Downloads 116