Search results for: nonlinear analytical model
16194 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 45616193 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers
Authors: U. Chattaraj, K. Dhusiya, M. Raviteja
Abstract:
Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.Keywords: driver, fuzzy logic, perception reaction time, premise variable
Procedia PDF Downloads 30416192 Development of a Mathematical Model to Characterize the Oil Production in the Federal Republic of Nigeria Environment
Authors: Paul C. Njoku, Archana Swati Njoku
Abstract:
The study deals with the development of a mathematical model to characterize the oil production in Nigeria. This is calculated by initiating the dynamics of oil production in million barrels revenue plan cost of oil production in million nairas and unit cost of production from 1974-1982 in the contest of the federal Republic of Nigeria. This country export oil to other countries as well as importing specialized crude. The transport network from origin/destination tij to pairs is taking into account simulation runs, optimization have been considered in this study.Keywords: mathematical oil model development dynamics, Nigeria, characterization barrels, dynamics of oil production
Procedia PDF Downloads 38716191 The Factors Influencing Consumer Intentions to Use Internet Banking and Apps: A Case of Banks in Cambodia
Authors: Tithdanin Chav, Phichhang Ou
Abstract:
The study is about the e-banking consumer behavior of five major banks in Cambodia. This work aims to examine the relationships among job relevance, trust, mobility, perceived ease of use, perceived usefulness, attitude toward using, and intention to use of internet banking and apps. Also, the research develops and tests a conceptual model of intention to use internet banking by integrating the Technology Acceptance Model (TAM) and job relevance, trust, and mobility which were supported by Theory of Reasoned Action (TRA) and Theory of Planned Behavior (TPB). The proposed model was tested using Structural Equation Modeling (SEM), which was processed by using SPSS and AMOS with a sample size of 250 e-banking users. The results showed that there is a significant positive relationship among variables and attitudes toward using internet banking, and apps are the most factor influencing consumers’ intention to use internet banking and apps with the importance level in SEM 0.82 accounted by 82%. Significantly, all six hypotheses were accepted.Keywords: bank apps, consumer intention, internet banking, technology acceptance model, TAM
Procedia PDF Downloads 14216190 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area
Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu
Abstract:
In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for %50, %75 and %100 loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.Keywords: distribution system, harmonic, technical losses, power factor, total harmonic distortion, residential load, medium voltage
Procedia PDF Downloads 57316189 The Charge Exchange and Mixture Formation Model in the ASz-62IR Radial Aircraft Engine
Authors: Pawel Magryta, Tytus Tulwin, Paweł Karpiński
Abstract:
The ASz62IR engine is a radial aircraft engine with 9 cylinders. This object is produced by the Polish company WSK "PZL-KALISZ" S.A. This is engine is currently being developed by the above company and Lublin University of Technology. In order to provide an effective work of the technological development of this unit it was decided to made the simulation model. The model of ASz-62IR was developed with AVL BOOST software which is a tool dedicated to the one-dimensional modeling of internal combustion engines. This model can be used to calculate parameters of an air and fuel flow in an intake system including charging devices as well as combustion and exhaust flow to the environment. The main purpose of this model is the analysis of the charge exchange and mixture formation in this engine. For this purpose, the model consists of elements such: as air inlet, throttle system, compressor connector, charging compressor, inlet pipes and injectors, outlet pipes, fuel injection and model of fuel mixing and evaporation. The model of charge exchange and mixture formation was based on the model of mass flow rate in intake and exhaust pipes, and also on the calculation of gas properties values like gas constant or thermal capacity. This model was based on the equations to describe isentropic flow. The energy equation to describe flow under steady conditions was transformed into the mass flow equation. In the model the flow coefficient μσ was used, that varies with the stroke/valve opening and was determined in a steady flow state. The geometry of the inlet channels and other key components was mapped with reference to the technical documentation of the engine and empirical measurements of the structure elements. The volume of elements on the charge flow path between the air inlet and the exhaust outlet was measured by the CAD mapping of the structure. Taken from the technical documentation, the original characteristics of the compressor engine was entered into the model. Additionally, the model uses a general model for the transport of chemical compounds of the mixture. There are 7 compounds used, i.e. fuel, O2, N2, CO2, H2O, CO, H2. A gasoline fuel of a calorific value of 43.5 MJ/kg and an air mass fraction for stoichiometric mixture of 14.5 were used. Indirect injection into the intake manifold is used in this model. The model assumes the following simplifications: the mixture is homogenous at the beginning of combustion, accordingly, mixture stoichiometric coefficient A/F remains constant during combustion, combusted and non-combusted charges show identical pressures and temperatures although their compositions change. As a result of the simulation studies based on the model described above, the basic parameters of combustion process, charge exchange, mixture formation in cylinders were obtained. The AVL Boost software is very useful for the piston engine performance simulations. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: aviation propulsion, AVL Boost, engine model, charge exchange, mixture formation
Procedia PDF Downloads 33816188 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models
Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko
Abstract:
The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.Keywords: sparse matrix, compressed format, Hubbard model, Anderson model
Procedia PDF Downloads 40216187 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 26616186 Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations
Authors: Hycham Aboutaleb, Bruno Monsuez
Abstract:
Current systems' complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal, and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponentially growing effort, cost, and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework, and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graph-based formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity.Keywords: higraph-based, formalism, system engineering paradigm, modeling requirements, graph-based transformations
Procedia PDF Downloads 40316185 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model
Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari
Abstract:
The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.Keywords: Tigris River, climate change, water resources, SWAT
Procedia PDF Downloads 20416184 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations
Authors: M. Abdallah
Abstract:
Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.Keywords: deep excavation, ground anchors, interaction soil-structure, struts
Procedia PDF Downloads 41416183 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro
Authors: Rafael Zhindon Almeida
Abstract:
Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models
Procedia PDF Downloads 9816182 Development of Management Model for Promoting Sustainable Tourism of Rajabhat Universities in Thailand
Authors: Weera Weerasophon
Abstract:
This research paper is to study the development of a management model for promoting sustainable tourism of Rajabhat universities in Thailand. Mixed Method Research is applied under the said topic. The researcher has developed a management model to promote sustainable tourism. The objectives of the research are 1) to study the readiness in management sustainable tourism of Rajabhat universities in Thailand 2) to develop a management model for promoting sustainable tourism of those universities. The process of this research is organized in two steps according to the objectives. The results of the research are as in the following: 1. Rajabhat universities have the readiness in management for promoting sustainable tourism. The universities can be developed to be sustainable tourist attraction under the admistrators who have vision and realize the importance of tourism, eager to promote sustainable tourism of the universities by specifying obvious policy plans and management. 2. The management model for promoting sustainable tourism of Rajabhat universities is consisted of the main following factors : 2.1 Master plan and policy, 2.2 Rajabhat universities organization management and personnel administration, 2.3 Assignment and authority, leadership, 2.4 Join network, 2.5 Assurance of quality and controlling, 2.6 Budget management, 2.7 Human Resources management, 2.8 Alliance and co-ordination, 2.9 Tool of marketing. There are also other communal factors for promoting sustainable tourism. They are: local communities, local communities, tourism activities, government and private sectors, communicative technology system, history, tourist attractive, art and culture, internal and external environment including local wisdom heritage. The management model for promoting sustainable tourism can be concluded from these main and communal factors mentioned above.Keywords: tourism, sustainable tourism, management, Rajabhat University
Procedia PDF Downloads 41416181 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 29716180 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites
Authors: Sarra Haouala, Issam Doghri
Abstract:
In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization
Procedia PDF Downloads 36916179 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments
Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo
Abstract:
This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.Keywords: cloud, enhancing security, fog, IoT, telehealth
Procedia PDF Downloads 7816178 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 43816177 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field
Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde
Abstract:
The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients
Procedia PDF Downloads 8416176 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load
Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir
Abstract:
Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy
Procedia PDF Downloads 18816175 Resource Allocation Modeling and Simulation in Border Security Application
Authors: Kai Jin, Hua Li, Qing Song
Abstract:
Homeland security and border safety is an issue for any country. This paper takes the border security of US as an example to discuss the usage and efficiency of simulation tools in the homeland security application. In this study, available resources and different illegal infiltration parameters are defined, including their individual behavior and objective, in order to develop a model that describes border patrol system. A simulation model is created in Arena. This simulation model is used to study the dynamic activities in the border security. Possible factors that may affect the effectiveness of the border patrol system are proposed. Individual and factorial analysis of these factors is conducted and some suggestions are made.Keywords: resource optimization, simulation, modeling, border security
Procedia PDF Downloads 51616174 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 43016173 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46616172 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression
Procedia PDF Downloads 41616171 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin
Procedia PDF Downloads 44316170 QSAR Study and Haptotropic Rearrangement in Estradiol Derivatives
Authors: Mohamed Abd Esselem Dems, Souhila Laib, Nadjia Latelli, Nadia Ouddai
Abstract:
In this work, we have developed QSAR model for Relative Binding Affinity (RBA) of a large diverse set of estradiol among these derivatives, the organometallic derivatives. By dividing the dataset into a training set of 24 compounds and a test set of 6 compounds. The DFT method was used to calculate quantum chemical descriptors and physicochemical descriptors (MR and MLOGP) were performed using E-Dragon. All the validations indicated that the QSAR model built was robust and satisfactory (R2 = 90.12, Q2LOO = 86.61, RMSE = 0.272, F = 60.6473, Q2ext =86.07). We have therefore apply this model to predict the RBA, for two isomers β and α wherein Mn(CO)3 complex with the aromatic ring of estradiol, and the two isomers show little appreciation for the estrogenic receptor (RBAβ = 1.812 and RBAα = 1.741).Keywords: DFT, estradiol, haptotropic rearrangement, QSAR, relative binding affinity
Procedia PDF Downloads 29416169 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement
Authors: Fatema-Tuz-Zahura, Raquib Ahsan
Abstract:
Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.Keywords: flat plate, finite element model, punching shear, reinforcement ratio
Procedia PDF Downloads 25716168 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 32516167 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies
Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru
Abstract:
Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil
Procedia PDF Downloads 37516166 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction
Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin
Abstract:
Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria
Procedia PDF Downloads 9316165 Development of a One-Window Services Model for Accessing Cancer Immunotherapies
Authors: Rizwan Arshad, Alessio Panza, Nimra Inayat, Syeda Mariam Batool Kazmi, Shawana Azmat
Abstract:
The rapidly expanding use of immunotherapy for a wide range of cancers from late to early stages has, predictably, been accompanied by evidence of inequities in access to these highly effective but costly treatments. In this survey-based case study, we aimed to develop a One-window services model (OWSM) based on Anderson’s behavioral model to enhance competence in accessing cancer medications, particularly immunotherapies, through the analysis of 20 patient surveys conducted in the Armed forces bone marrow transplant center of the district, Rawalpindi from November to December 2022. The purposive sampling technique was used. Cronbach’s alpha coefficient was found to be 0.71. It was analyzed using SPSS version 26 with descriptive analysis, and results showed that the majority of the cancer patients were non-competent to access their prescribed cancer immunotherapy because of individual-level, socioeconomic, and organizational barriers.Keywords: cancer immunotherapy, one-window services model, accessibility, competence
Procedia PDF Downloads 76