Search results for: linear static analysis
27662 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation
Abstract:
Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting
Procedia PDF Downloads 9927661 Demonstrating a Relationship of Frequency and Weight with Arduino UNO and Visual Basic Program
Authors: Woraprat Chaomuang, Sirikorn Sringern, Pawanrat Chamnanwongsritorn, Kridsada Luangthongkham
Abstract:
In this study, we have applied a digital scale to demonstrate the electricity concept of changing the capacity (C), due to the weight of an object, as a function of the distance between the conductor plates and the pressing down. By calibrating on standard scales with the Visual Basic program and the Arduino Uno microcontroller board, we can obtain the weight of the object from the frequency (ƒ) that is measured from the electronic circuit (Astable Multivibrator). Our results support the concept, showing a linear correlation between the frequency and weight with an equation y = –0.0112x + 379.78 and the R2 value of 0.95. In addition, the effects of silicone rods shrinkage, permittivity and temperature were also examined and have found to affect various graph patterns observed.Keywords: Arduino Uno board, frequency, microcontroller board, parallel plate conductor
Procedia PDF Downloads 20727660 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation
Procedia PDF Downloads 29227659 Trends in Incisional and Ventral Hernia Repair: A Population Analysis from 2001 to 2021
Authors: Lakmali Anthony, Madeline Gillies
Abstract:
Background: Incisional and ventral hernias are highly prevalent, with primary ventral hernias occurring in approximately 20% of adults and incisional hernias developing in up to 30% of midline abdominal incisions. Recent data from the United States have shown an increasing incidence of elective incisional and ventral hernia repair (IVHR) and emergency repair of complicated hernias. This study examines Australian population trends in IVHR over a two-decade study period. Methods: This retrospective study was performed using procedure data from the Australian Institute of Health and Welfare, and population data from the Australian Bureau of Statistics captured between 2000 and 2021 to calculate incidence rates per 100,000 population by age and sex for selected subcategories of IVHR operations. Trends over time were evaluated using simple linear regression. Results: There were 809,308 IVHR operations performed in Australia during the study period. The cumulative incidence adjusted for the population was 182 per 100,000; this increased by 9.578 per year during the study period (95% CI = 8.431- 10.726, p<.001). IVHR for primary umbilical hernias experienced the most significant increase in population-adjusted incidence, 1.177 per year. (95% CI = 0.654- 1.701, p<.001). Emergency IVHR for incarcerated, obstructed, and strangulated hernias increased by 0.576 per year (95% CI = 0.510 -0.642, p<.001). Only 20.2% of IVHR procedures were performed as day surgery. Conclusions: Australia has seen a significant increase in IVHR operations performed in the last 20 years, particularly those for primary ventral hernias. IVHR for hernias complicated by incarceration, obstruction, and strangulation also increased significantly. The proportion of IVHR operations performed as day surgery is well below the target set by the Royal Australasian College of Surgeons. With the increasing incidence of IVHR operations and an increasing proportion of these being emergent, elective IVHR should be performed as day surgery when it is safe.Keywords: ventral, incisional, hernia, trends
Procedia PDF Downloads 7427658 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid
Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan
Abstract:
In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.Keywords: acid treatment, chemical extraction, sludge, waste management
Procedia PDF Downloads 19827657 A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers
Authors: Hong Dinh Duong, Jong Il Rhee
Abstract:
In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM.Keywords: nanofiber, QDs, ratiometric phosphate sensor, rhodamine 6G, sol-gel
Procedia PDF Downloads 40927656 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 24927655 A Trends Analysis of Yatch Simulator
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.Keywords: yacht simulator, simulator, trends analysis, SIFT
Procedia PDF Downloads 43227654 The Use of Ward Linkage in Cluster Integration with a Path Analysis Approach
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
Path analysis is an analytical technique to study the causal relationship between independent and dependent variables. In this study, the integration of Clusters in the Ward Linkage method was used in a variety of clusters with path analysis. The variables used are character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₄) to on time pay (y₂) through the variable willingness to pay (y₁). The purpose of this study was to compare the Ward Linkage method cluster integration in various clusters with path analysis to classify willingness to pay (y₁). The data used are primary data from questionnaires filled out by customers of Bank X, using purposive sampling. The measurement method used is the average score method. The results showed that the Ward linkage method cluster integration with path analysis on 2 clusters is the best method, by comparing the coefficient of determination. Variable character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₅) to on time pay (y₂) through willingness to pay (y₁) can be explained by 58.3%, while the remaining 41.7% is explained by variables outside the model.Keywords: cluster integration, linkage, path analysis, compliant paying behavior
Procedia PDF Downloads 18627653 Assessment of the Energy Balance Method in the Case of Masonry Domes
Authors: M. M. Sadeghi, S. Vahdani
Abstract:
Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.Keywords: energy balance method, pushover analysis, time history analysis, masonry dome
Procedia PDF Downloads 28127652 A Survey on Linear Time Invariant Multivariable Positive Real Systems
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties
Procedia PDF Downloads 27427651 Modelling the Effect of Biomass Appropriation for Human Use on Global Biodiversity
Authors: Karina Reiter, Stefan Dullinger, Christoph Plutzar, Dietmar Moser
Abstract:
Due to population growth and changing patterns of production and consumption, the demand for natural resources and, as a result, the pressure on Earth’s ecosystems are growing. Biodiversity mapping can be a useful tool for assessing species endangerment or detecting hotspots of extinction risks. This paper explores the benefits of using the change in trophic energy flows as a consequence of the human alteration of the biosphere in biodiversity mapping. To this end, multiple linear regression models were developed to explain species richness in areas where there is no human influence (i.e. wilderness) for three taxonomic groups (birds, mammals, amphibians). The models were then applied to predict (I) potential global species richness using potential natural vegetation (NPPpot) and (II) global ‘actual’ species richness after biomass appropriation using NPP remaining in ecosystems after harvest (NPPeco). By calculating the difference between predicted potential and predicted actual species numbers, maps of estimated species richness loss were generated. Results show that biomass appropriation for human use can indeed be linked to biodiversity loss. Areas for which the models predicted high species loss coincide with areas where species endangerment and extinctions are recorded to be particularly high by the International Union for Conservation of Nature and Natural Resources (IUCN). Furthermore, the analysis revealed that while the species distribution maps of the IUCN Red List of Threatened Species used for this research can determine hotspots of biodiversity loss in large parts of the world, the classification system for threatened and extinct species needs to be revised to better reflect local risks of extinction.Keywords: biodiversity loss, biomass harvest, human appropriation of net primary production, species richness
Procedia PDF Downloads 13027650 Layer-By-Layer Deposition of Poly(Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric: Electrostatic and Thermal Properties
Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska
Abstract:
The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20°C). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.Keywords: layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties
Procedia PDF Downloads 43727649 Sensitivity Analysis for 14 Bus Systems in a Distribution Network with Distributed Generators
Authors: Lakshya Bhat, Anubhav Shrivastava, Shiva Rudraswamy
Abstract:
There has been a formidable interest in the area of Distributed Generation in recent times. A wide number of loads are addressed by Distributed Generators and have better efficiency too. The major disadvantage in Distributed Generation is voltage control- is highlighted in this paper. The paper addresses voltage control at buses in IEEE 14 Bus system by regulating reactive power. An analysis is carried out by selecting the most optimum location in placing the Distributed Generators through load flow analysis and seeing where the voltage profile rises. MATLAB programming is used for simulation of voltage profile in the respective buses after introduction of DG’s. A tolerance limit of +/-5% of the base value has to be maintained. To maintain the tolerance limit, 3 methods are used. Sensitivity analysis of 3 methods for voltage control is carried out to determine the priority among the methods.Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis
Procedia PDF Downloads 70327648 Pressure-Robust Approximation for the Rotational Fluid Flow Problems
Authors: Medine Demir, Volker John
Abstract:
Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces
Procedia PDF Downloads 6727647 Assessment of the Efficacy of Routine Medical Tests in Screening Medical Radiation Staff in Shiraz University of Medical Sciences Educational Centers
Authors: Z. Razi, S. M. J. Mortazavi, N. Shokrpour, Z. Shayan, F. Amiri
Abstract:
Long-term exposure to low doses of ionizing radiation occurs in radiation health care workplaces. Although doses in health professions are generally very low, there are still matters of concern. The radiation safety program promotes occupational radiation safety through accurate and reliable monitoring of radiation workers in order to effectively manage radiation protection. To achieve this goal, it has become mandatory to implement health examination periodically. As a result, based on the hematological alterations, working populations with a common occupational radiation history are screened. This paper calls into question the effectiveness of blood component analysis as a screening program which is mandatory for medical radiation workers in some countries. This study details the distribution and trends of changes in blood components, including white blood cells (WBCs), red blood cells (RBCs) and platelets as well as received cumulative doses from occupational radiation exposure. This study was conducted among 199 participants and 100 control subjects at the medical imaging departments at the central hospital of Shiraz University of Medical Sciences during the years 2006–2010. Descriptive and analytical statistics, considering the P-value<0.05 as statistically significance was used for data analysis. The results of this study show that there is no significant difference between the radiation workers and controls regarding WBCs and platelet count during 4 years. Also, we have found no statistically significant difference between the two groups with respect to RBCs. Besides, no statistically significant difference was observed with respect to RBCs with regards to gender, which has been analyzed separately because of the lower reference range for normal RBCs levels in women compared to men and. Moreover, the findings confirm that in a separate evaluation between WBCs count and the personnel’s working experience and their annual exposure dose, results showed no linear correlation between the three variables. Since the hematological findings were within the range of control levels, it can be concluded that the radiation dosage (which was not more than 7.58 mSv in this study) had been too small to stimulate any quantifiable change in medical radiation worker’s blood count. Thus, use of more accurate method for screening program based on the working profile of the radiation workers and their accumulated dose is suggested. In addition, complexity of radiation-induced functions and the influence of various factors on blood count alteration should be taken into account.Keywords: blood cell count, mandatory testing, occupational exposure, radiation
Procedia PDF Downloads 46127646 Frobenius Manifolds Pairing and Invariant Theory
Authors: Zainab Al-Maamari, Yassir Dinar
Abstract:
The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds.Keywords: invariant ring, Frobenius manifold, inversion, representation theory
Procedia PDF Downloads 9827645 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes
Authors: Haoming Ma, Guo Yu, Peiru Zhou
Abstract:
Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.Keywords: diabetes, glycemic variability, predictors, severe disease
Procedia PDF Downloads 18927644 Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach
Authors: Walied Hanora
Abstract:
This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result.Keywords: fuzzy lyapunov function, H∞ control , linear matrix inequalities, state feedback, T-S fuzzy systems
Procedia PDF Downloads 28827643 Techno-Economic Analysis of the Production of Aniline
Authors: Dharshini M., Hema N. S.
Abstract:
The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.Keywords: aniline, nitrobenzene, economic analysis, unit production cost
Procedia PDF Downloads 10927642 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang
Abstract:
Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.Keywords: MIMO radar, phased array antenna, target detection, radar signal processing
Procedia PDF Downloads 54227641 Solving Momentum and Energy Equation by Using Differential Transform Techniques
Authors: Mustafa Ekici
Abstract:
Natural convection is a basic process which is important in a wide variety of practical applications. In essence, a heated fluid expands and rises from buoyancy due to decreased density. Numerous papers have been written on natural or mixed convection in vertical ducts heated on the side. These equations have been proved to be valuable tools for the modelling of many phenomena such as fluid dynamics. Finding solutions to such equations or system of equations are in general not an easy task. We propose a method, which is called differential transform method, of solving a non-linear equations and compare the results with some of the other techniques. Illustrative examples shows that the results are in good agreement.Keywords: differential transform method, momentum, energy equation, boundry value problem
Procedia PDF Downloads 46127640 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement
Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza
Abstract:
This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain
Procedia PDF Downloads 43927639 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter
Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott
Abstract:
Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM
Procedia PDF Downloads 39527638 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography
Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song
Abstract:
Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound
Procedia PDF Downloads 45727637 Assessing Role of Newspapers in Creating Awareness of HIV/AIDS in Pakistan
Authors: Fatima Kiran
Abstract:
This study investigates the HIV/AIDS coverage in the selected newspapers. The premises of the study depend upon the fact that informing public about any social issue that effects people’s life is among one of the fundamental functions of media, such as HIV/AIDS is one of prime importance. In this study two most prime newspapers of Pakistan Daily Jang and Daily Dawn were analyzed. This paper adopted two approaches for investigation one is content analysis and another is discourse analysis. The content analysis was used to determine the frequency of HIV/AIDS content coverage. Discourse analysis was used to determine consciousness of these newspapers on covering HIV/AIDS stories with correct language and terminologies according to the given media guideline of UNICEF. Total 368 editions from 1st July 2017 to 31st December 2017 were sampled for the study. The result of the study indicates that newspapers have severely underestimated the severity of HIV/AIDS. The coverage given by newspapers is dissatisfactory. Selected newspapers used inappropriate terminologies and language in the stories which shows negligence of newspapers regarding HIV/AIDS issue.Keywords: Pakistani newspapers, HIV/AIDS, coverage, public awareness, content analysis, discourse analysis, press consciousness
Procedia PDF Downloads 14027636 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method
Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene
Abstract:
This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems
Procedia PDF Downloads 25527635 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts
Authors: Atoum Abdullah
Abstract:
The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.Keywords: animation, narration, science, teaching
Procedia PDF Downloads 17027634 Computer Simulation Studies of Aircraft Wing Architectures on Vibration Responses
Authors: Shengyong Zhang, Mike Mikulich
Abstract:
Vibration is a crucial limiting consideration in the analysis and design of airplane wing structures to avoid disastrous failures due to the propagation of existing cracks in the material. In this paper, we build CAD models of aircraft wings to capture the design intent with configurations. Subsequent FEA vibration analysis is performed to study the natural vibration properties and impulsive responses of the resulting user-defined wing models. This study reveals the variations of the wing’s vibration characteristics with respect to changes in its structural configurations. Integrating CAD modelling and FEA vibration analysis enables designers to improve wing architectures for implementing design requirements in the preliminary design stage.Keywords: aircraft wing, CAD modelling, FEA, vibration analysis
Procedia PDF Downloads 16527633 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 231