Search results for: prediction modelling
1088 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine
Authors: Anas Rao, Hao Duan, Fanhua Ma
Abstract:
The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet
Procedia PDF Downloads 2521087 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns
Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)
Procedia PDF Downloads 801086 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications
Authors: Farhad Salek, Shahaboddin Resalati
Abstract:
The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.Keywords: second life battery, electric vehicles, degradation, neural network
Procedia PDF Downloads 661085 Geochemistry and Petrogenesis of Anorogenic Acid Plutonic Rocks of Khanak and Devsar of Southwestern Haryana
Authors: Naresh Kumar, Radhika Sharma, A. K. Singh
Abstract:
Acid plutonic rocks from the Khanak and Devsar areas of southwestern Haryana were investigated to understand their geochemical and petrogenetic characteristics and tectonic environments. Three dominant rock types (grey, grayish green and pink granites) are the principal geochemical features of Khanak and Devsar areas which reflect the dependencies of their composition on varied geological environment during the anorogenic magmatism. These rocks are enriched in SiO₂, Na₂O+K₂O, Fe/Mg, Rb, Zr, Y, Th, U, REE (Rare Earth Elements) enriched and depleted in MgO, CaO, Sr, P, Ti, Ni, Cr, V and Eu and exhibit a clear affinity to the within-plate granites that were emplaced in an extensional tectonic environment. Chondrite-normalized REE patterns show enriched LREE (Light Rare Earth Elements), moderate to strong negative Eu anomalies and flat heavy REE and grey and grayish green is different from pink granite which is enriched by Rb, Ga, Nb, Th, U, Y and HREE (Heavy Rare Earth Elements) concentrations. The composition of parental magma of both areas corresponds to mafic source contaminated with crustal materials. Petrogenetic modelling suggest that the acid plutonic rocks might have been generated from a basaltic source by partial melting (15-25%) leaving a residue with 35% plagioclase, 25% alkali feldspar, 25% quartz, 7% orthopyroxene, 5% biotite and 3% hornblende. Granites from both areas might be formed from different sources with different degree of melting for grey, grayish green and pink granites.Keywords: A-type granite, anorogenic, Malani igneous suite, Khanak and Devsar
Procedia PDF Downloads 1791084 Prediction of Flow Around a NACA 0015 Profile
Authors: Boukhadia Karima
Abstract:
The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel
Procedia PDF Downloads 4111083 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 981082 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement
Authors: Sai Sankalp Vemavarapu
Abstract:
This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation
Procedia PDF Downloads 1641081 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities
Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová
Abstract:
Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.Keywords: BIM model, urban space, BIM methodology, facility management
Procedia PDF Downloads 1251080 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.Keywords: finite volume method, fluid flow, laminar flow, unstructured grid
Procedia PDF Downloads 2861079 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce
Authors: Jiao Sun, Li Pan, Shijun Liu
Abstract:
Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.Keywords: collaborative filtering, recommendation, data normalization, mapreduce
Procedia PDF Downloads 2171078 Sustainable Manufacturing Industries and Energy-Water Nexus Approach
Authors: Shahbaz Abbas, Lin Han Chiang Hsieh
Abstract:
The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management
Procedia PDF Downloads 1251077 Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations
Authors: Li-Hua Luu, Alexis Doghmane, Abbas Farhat, Mohammad Sanayei, Pierre Philippe, Pablo Cuellar
Abstract:
Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far.Keywords: fluidization, micromechanical approach, offshore foundations, suction bucket
Procedia PDF Downloads 1841076 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention
Authors: Paula A. Cruise, Carvell McLeary
Abstract:
Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.Keywords: context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention
Procedia PDF Downloads 2491075 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools
Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia
Abstract:
The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.Keywords: healthy lifestyle, high-risk behavior, students, physical education
Procedia PDF Downloads 1911074 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction
Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi
Abstract:
Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping
Procedia PDF Downloads 5091073 The Relationship between First-Day Body Temperature and Mortality in Traumatic Patients
Authors: Neda Valizadeh, Mani Mofidi, Sama Haghighi, Ali Hashemaghaee, Soudabeh Shafiee Ardestani
Abstract:
Background: There are many systems and parameters to evaluate trauma patients in the emergency department. Most of these evaluations are to distinguish patients with worse conditions so that the care systems have a better prediction of condition for a better care-giving. The purpose of this study is to determine the relationship between axillary body temperature and mortality in patients hospitalized in the intensive care unit (ICU) with multiple traumas and with other clinical and para-clinical factors. Methods: All patients between 16 and 75 years old with multiple traumas who were admitted into Emergency Department then hospitalized in the ICU were included in our study. An axillary temperature in the first and the second day of admission, Glasgow cola scale (GCS), systolic blood pressure, Serum glucose levels, and white blood cell counts of all patients at the admission day were recorded and their relationship with mortality were analyzed by SPSS software with suitable statistical tests. Results: Axillary body temperatures in the first and second day were statistically lower in expired traumatic patients (p=0.001 and p<0,001 respectively). Patients with lower GCS had a significantly lower first-day temperature and a significantly higher mortality. (p=0.006 and p=0.006 respectively). Furthermore, the first-day axillary temperature was significantly lower in patients with a lower first-day systolic blood pressure (p=0.014). Conclusion: Our results showed that lower axillary body temperature in the first day is associated with higher mortality, lower GCS, and lower systolic blood pressure. Thus, this could be used as a predictor of mortality in evaluation of traumatic patients in emergency settings.Keywords: fever, trauma, mortality, emergency
Procedia PDF Downloads 3771072 Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies
Authors: Boris Kolev, Matt Kokan, Mohammad Deriszadeh, Farshid Bateni
Abstract:
Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations.Keywords: deep excavations, lateral displacements, numerical modeling, shoring walls, tieback anchors
Procedia PDF Downloads 1831071 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 781070 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution
Procedia PDF Downloads 1231069 Theoretical Framework for Value Creation in Project Oriented Companies
Authors: Mariusz Hofman
Abstract:
The paper ‘Theoretical framework for value creation in Project-Oriented Companies’ is designed to determine, how organisations create value and whether this allows them to achieve market success. An assumption has been made that there are two routes to achieving this value. The first one is to create intangible assets (i.e. the resources of human, structural and relational capital), while the other one is to create added value (understood as the surplus of revenue over costs). It has also been assumed that the combination of the achieved added value and unique intangible assets translates to the success of a project-oriented company. The purpose of the paper is to present hypothetical and deductive model which describing the modus operandi of such companies and approach to model operationalisation. All the latent variables included in the model are theoretical constructs with observational indicators (measures). The existence of a latent variable (construct) and also submodels will be confirmed based on a covariance matrix which in turn is based on empirical data, being a set of observational indicators (measures). This will be achieved with a confirmatory factor analysis (CFA). Due to this statistical procedure, it will be verified whether the matrix arising from the adopted theoretical model differs statistically from the empirical matrix of covariance arising from the system of equations. The fit of the model with the empirical data will be evaluated using χ2, RMSEA and CFI (Comparative Fit Index). How well the theoretical model fits the empirical data is assessed through a number of indicators. If the theoretical conjectures are confirmed, an interesting development path can be defined for project-oriented companies. This will let such organisations perform efficiently in the face of the growing competition and pressure on innovation.Keywords: value creation, project-oriented company, structural equation modelling
Procedia PDF Downloads 2981068 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: classifier ensemble, breast cancer survivability, data mining, SEER
Procedia PDF Downloads 3291067 Elastoplastic Collapse Analysis of Pipe Bends Using Finite Element Analysis
Authors: Tawanda Mushiri, Charles Mbohwa
Abstract:
When an external load is applied to one of its ends, a pipe’s bends cross section tends to deform significantly both in and out of its end plane. This shell type behaviour characteristic of pipe bends and mainly due to their curves geometry accounts for their greater flexibility. This added flexibility is also accompanied by stressed and strains that are much higher than those present in a straight pipe. The primary goal of this research is to study the elastic-plastic behaviour of pipe bends under out of plane moment loading. It is also required to study the effects of changing the value of the pipe bend factor and the value of the internal pressure on that behaviour and to determine the value of the limit moments in each case. The results of these analyses are presented in the form of load deflection plots for each load case belonging to each model. From the load deflection curves, the limit moments of each case are obtained. The limit loads are then compared to those computed using some of the analytical and empirical equation available in the literature. The effects of modelling parameters are also studied. The results obtained from small displacement and large displacement analyses are compared and the effects of using a strain hardened material model are also investigated. To better understand the behaviour of pipe elbows under out of plane bending and internal pressure, it was deemed important to know how the cross section deforms and to study the distribution of stresses that cause it to deform in a particular manner. An elbow with pipe bend factor h=0.1 to h=1 is considered and the results of the detailed analysis are thereof examined.Keywords: elasto-plastic, finite element analysis, pipe bends, simulation
Procedia PDF Downloads 3251066 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: injection molding, plastic defects, short shot, Taguchi method
Procedia PDF Downloads 2191065 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair
Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro
Abstract:
The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear
Procedia PDF Downloads 5031064 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 2591063 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 771062 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression
Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner
Abstract:
In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry
Procedia PDF Downloads 1991061 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue
Procedia PDF Downloads 1881060 Bio-Guided of Active New Alkaloids from Alstonia Brassi Toxicity Antitumour Activity in Silico and Molecular Modeling
Authors: Mesbah Khaled, Bouraoui Ouissal, Benkiniouar Rachid, Belkhiri Lotfi
Abstract:
Alstonia, which are tropical plants with a wide geographical distribution, have been divided into different sections by different authors based on previous studies of several species within the genus. Monachino divides Alstonia into 5 sections, while Pichon divides it into 3 sections. Several plants belonging to this genus, such as Alstonia brassii, have been used in traditional folk medicine to treat ailments such as fever, malaria and dysentery]. Previous studies focusing on the chemical composition of these plants have successfully identified indol alkaloids with cytotoxic, anti-diabetic and anti-inflammatory properties. The newly discovered monomers are structurally similar to the backbones of picralin, affinisin and macrolin. On the other hand, all recently isolated dimeric compounds have a macrolin moiety. In this study, a computational analysis was performed on a series of novel molecules, including both monomeric and dimeric compounds with different structural frameworks. This investigation represents the first computational study of these molecules using an in silico approach incorporating 2D-QSAR data. The analysis involved various computational techniques, including 2D-QSAR modelling, molecular docking studies and subsequent validation by molecular dynamics simulation and assessment of ADMET properties. The chemical composition was identified by 1D and 2D NMR. Eight new alkaloids were isolated, 5 monomers and 3 dimers. In this section, we focus on the biological activity of 4 new alkaloids belonging to two different skeletons, the affinisine skeleton.Keywords: affinisine, talcarpine, macroline, cytotoxicity, alkaloids
Procedia PDF Downloads 3971059 Optimization of Multi Commodities Consumer Supply Chain: Part 1-Modelling
Authors: Zeinab Haji Abolhasani, Romeo Marian, Lee Luong
Abstract:
This paper and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain problems known as Multi- Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem belongs to production-distribution (P-D) planning category. It aims to determine facilities location, consumers’ allocation, and facilities configuration to minimize total cost (CT) of the entire network. These facilities can be manufacturer units (MUs), distribution centres (DCs), and retailers/end-users (REs) but not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a mixed integer non-linear programming (MINP) mathematical model is developed. Then, system’s behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization technique. Due to the large size of the problem, and the uncertainties in finding the most optimum solution, integration of modeling and simulation methodologies is proposed followed by developing new approach known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the methodology of this research. In part II, MCCSC is simulated using discrete-event simulation (DES) device within an integrated environment of SimEvents and Simulink of MATLAB® software package followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators on the obtained optimal/near optimal solution by the simulation model will be discussed in part III.Keywords: supply chain, genetic algorithm, optimization, simulation, discrete event system
Procedia PDF Downloads 317