Search results for: DFIG machine
88 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels
Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray
Abstract:
There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold
Procedia PDF Downloads 20387 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)
Authors: Tuğrul Varol, Halil Barış Özel
Abstract:
In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis
Procedia PDF Downloads 41886 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track
Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes
Abstract:
A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.Keywords: white etching layer, arcing, brown etching layer, material characterisation
Procedia PDF Downloads 12185 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance
Authors: Saiyed M Ishtiaque, Priyal Dixit
Abstract:
Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop
Procedia PDF Downloads 7584 Surface Roughness in the Incremental Forming of Drawing Quality Cold Rolled CR2 Steel Sheet
Authors: Zeradam Yeshiwas, A. Krishnaia
Abstract:
The aim of this study is to verify the resulting surface roughness of parts formed by the Single-Point Incremental Forming (SPIF) process for an ISO 3574 Drawing Quality Cold Rolled CR2 Steel. The chemical composition of drawing quality Cold Rolled CR2 steel is comprised of 0.12 percent of carbon, 0.5 percent of manganese, 0.035 percent of sulfur, 0.04 percent phosphorous, and the remaining percentage is iron with negligible impurities. The experiments were performed on a 3-axis vertical CNC milling machining center equipped with a tool setup comprising a fixture and forming tools specifically designed and fabricated for the process. The CNC milling machine was used to transfer the tool path code generated in Mastercam 2017 environment into three-dimensional motions by the linear incremental progress of the spindle. The blanks of Drawing Quality Cold Rolled CR2 steel sheets of 1 mm of thickness have been fixed along their periphery by a fixture and hardened high-speed steel (HSS) tools with a hemispherical tip of 8, 10 and 12mm of diameter were employed to fabricate sample parts. To investigate the surface roughness, hyperbolic-cone shape specimens were fabricated based on the chosen experimental design. The effect of process parameters on the surface roughness was studied using three important process parameters, i.e., tool diameter, feed rate, and step depth. In this study, the Taylor-Hobson Surtronic 3+ surface roughness tester profilometer was used to determine the surface roughness of the parts fabricated using the arithmetic mean deviation (Rₐ). In this instrument, a small tip is dragged across a surface while its deflection is recorded. Finally, the optimum process parameters and the main factor affecting surface roughness were found using the Taguchi design of the experiment and ANOVA. A Taguchi experiment design with three factors and three levels for each factor, the standard orthogonal array L9 (3³) was selected for the study using the array selection table. The lowest value of surface roughness is significant for surface roughness improvement. For this objective, the ‘‘smaller-the-better’’ equation was used for the calculation of the S/N ratio. The finishing roughness parameter Ra has been measured for the different process combinations. The arithmetic means deviation (Rₐ) was measured via the experimental design for each combination of the control factors by using Taguchi experimental design. Four roughness measurements were taken for a single component and the average roughness was taken to optimize the surface roughness. The lowest value of Rₐ is very important for surface roughness improvement. For this reason, the ‘‘smaller-the-better’’ Equation was used for the calculation of the S/N ratio. Analysis of the effect of each control factor on the surface roughness was performed with a ‘‘S/N response table’’. Optimum surface roughness was obtained at a feed rate of 1500 mm/min, with a tool radius of 12 mm, and with a step depth of 0.5 mm. The ANOVA result shows that step depth is an essential factor affecting surface roughness (91.1 %).Keywords: incremental forming, SPIF, drawing quality steel, surface roughness, roughness behavior
Procedia PDF Downloads 6283 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)
Authors: Eric Pla Erra, Mariana Jimenez Martinez
Abstract:
While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)
Procedia PDF Downloads 10582 Consumers Attitude toward the Latest Trends in Decreasing Energy Consumption of Washing Machine
Authors: Farnaz Alborzi, Angelika Schmitz, Rainer Stamminger
Abstract:
Reducing water temperatures in the wash phase of a washing programme and increasing the overall cycle durations are the latest trends in decreasing energy consumption of washing programmes. Since the implementation of the new energy efficiency classes in 2010, manufacturers seem to apply the aforementioned washing strategy with lower temperatures combined with longer programme durations extensively to realise energy-savings needed to meet the requirements of the highest energy efficiency class possible. A semi-representative on-line survey in eleven European countries (Czech Republic, Finland, France, Germany, Hungary, Italy, Poland, Romania, Spain, Sweden and the United Kingdom) was conducted by Bonn University in 2015 to shed light on consumer opinion and behaviour regarding the effects of the lower washing temperature and longer cycle duration in laundry washing on consumers’ acceptance of the programme. The risk of the long wash cycle is that consumers might not use the energy efficient Standard programmes and will think of this option as inconvenient and therefore switch to shorter, but more energy consuming programmes. Furthermore, washing in a lower temperature may lead to the problem of cross-contamination. Washing behaviour of over 5,000 households was studied in this survey to provide support and guidance for manufacturers and policy designers. Qualified households were chosen following a predefined quota: -Involvement in laundry washing: substantial, -Distribution of gender: more than 50 % female , -Selected age groups: -20–39 years, -40–59 years, -60–74 years, -Household size: 1, 2, 3, 4 and more than 4 people. Furthermore, Eurostat data for each country were used to calculate the population distribution in the respective age class and household size as quotas for the consumer survey distribution in each country. Before starting the analyses, the validity of each dataset was controlled with the aid of control questions. After excluding the outlier data, the number of the panel diminished from 5,100 to 4,843. The primary outcome of the study is European consumers are willing to save water and energy in a laundry washing but reluctant to use long programme cycles since they don’t believe that the long cycles could be energy-saving. However, the results of our survey don’t confirm that there is a relation between frequency of using Standard cotton (Eco) or Energy-saving programmes and the duration of the programmes. It might be explained by the fact that the majority of washing programmes used by consumers do not take so long, perhaps consumers just choose some additional time reduction option when selecting those programmes and this finding might be changed if the Energy-saving programmes take longer. Therefore, it may be assumed that introducing the programme duration as a new measure on a revised energy label would strongly influence the consumer at the point of sale. Furthermore, results of the survey confirm that consumers are more willing to use lower temperature programmes in order to save energy than accepting longer programme cycles and majority of them accept deviation from the nominal temperature of the programme as long as the results are good.Keywords: duration, energy-saving, standard programmes, washing temperature
Procedia PDF Downloads 22181 Innovation Ecosystems in Construction Industry
Authors: Cansu Gülser, Tuğce Ercan
Abstract:
The construction sector is a key driver of the global economy, contributing significantly to growth and employment through a diverse array of sub-sectors. However, it faces challenges due to its project-based nature, which often hampers long-term collaboration and broader incentives beyond individual projects. These limitations are frequently discussed in scientific literature as obstacles to innovation and industry-wide change. Traditional practices and unwritten rules further hinder the adoption of new processes within the construction industry. The disadvantages of the construction industry’s project-based structure in fostering innovation and long-term relationships include limited continuity, fragmented collaborations, and a focus on short-term goals, which collectively hinder the development of sustained partnerships, inhibit the sharing of knowledge and best practices, and reduce incentives for investing in innovative processes and technologies. This structure typically emphasizes specific projects, which restricts broader collaborations and incentives that extend beyond individual projects, thus impeding innovation and change. The temporal complexities inherent in project-based sectors like construction make it difficult to address societal challenges through collaborative efforts. Traditional management approaches are inadequate for scaling up innovations and adapting to significant changes. For systemic transformation in the construction sector, there is a need for more collaborative relationships and activities beyond traditional supply chains. This study delves into the concept of an innovation ecosystem within the construction sector, highlighting various research findings. It aims to explore key questions about the components that enhance innovation capacity, the relationship between a robust innovation ecosystem and this capacity, and the reasons why innovation is less prevalent and implemented in this sector compared to others. Additionally, it examines the main factors hindering innovation within companies and identifies strategies to improve these efforts, particularly in developing countries. The innovation ecosystem in the construction sector generates various outputs through interactions between business resources and external components. These outputs include innovative value creation, sustainable practices, robust collaborations, knowledge sharing, competitiveness, and advanced project management, all of which contribute significantly to company market performance and competitive advantage. This article offers insights and strategic recommendations for industry professionals, policymakers, and researchers interested in developing and sustaining innovation ecosystems in the construction sector. Future research should focus on broader samples for generalization, comparative sector analysis, and application-focused studies addressing real industry challenges. Additionally, studying the long-term impacts of innovation ecosystems, integrating advanced technologies like AI and machine learning into project management, and developing future application strategies and policies are also important.Keywords: construction industry, innovation ecosystem, innovation ecosystem components, project management
Procedia PDF Downloads 3580 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions
Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana
Abstract:
The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.Keywords: antimicrobial, home device, SEBS, zinc
Procedia PDF Downloads 32479 Solutions for Food-Safe 3D Printing
Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov
Abstract:
Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this studyKeywords: food safety, 3D printing, filaments, microbial, temperature
Procedia PDF Downloads 14278 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 13177 Evaluation of Natural Frequency of Single and Grouped Helical Piles
Authors: Maryam Shahbazi, Amy B. Cerato
Abstract:
The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.Keywords: helical pile, natural frequency, pile group, shake table, stiffness
Procedia PDF Downloads 13376 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance
Authors: Yi Jen Wang, Yu Ju Chen
Abstract:
Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing
Procedia PDF Downloads 17575 The Effect of Rheological Properties and Spun/Meltblown Fiber Characteristics on “Hotmelt Bleed through” Behavior in High Speed Textile Backsheet Lamination Process
Authors: Kinyas Aydin, Fatih Erguney, Tolga Ceper, Serap Ozay, Ipar N. Uzun, Sebnem Kemaloglu Dogan, Deniz Tunc
Abstract:
In order to meet high growth rates in baby diaper industry worldwide, the high-speed textile backsheet lamination lines have recently been introduced to the market for non-woven/film lamination applications. It is a process where two substrates are bonded to each other via hotmelt adhesive (HMA). Nonwoven (NW) lamination system basically consists of 4 components; polypropylene (PP) nonwoven, polyethylene (PE) film, HMA and applicator system. Each component has a substantial effect on the process efficiency of continuous line and final product properties. However, for a precise subject cover, we will be addressing only the main challenges and possible solutions in this paper. The NW is often produced by spunbond method (SSS or SMS configuration) and has a 10-12 gsm (g/m²) basis weight. The NW rolls can have a width and length up to 2.060 mm and 30.000 linear meters, respectively. The PE film is the 2ⁿᵈ component in TBS lamination, which is usually a 12-14 gsm blown or cast breathable film. HMA is a thermoplastic glue (mostly rubber based) that can be applied in a large range of viscosity ranges. The main HMA application technology in TBS lamination is the slot die application in which HMA is spread on the top of the NW along the whole width at high temperatures in the melt form. Then, the NW is passed over chiller rolls with a certain open time depending on the line speed. HMAs are applied at certain levels in order to provide a proper de-lamination strength in cross and machine directions to the entire structure. Current TBS lamination line speed and width can be as high as 800 m/min and 2100 mm, respectively. They also feature an automated web control tension system for winders and unwinders. In order to run a continuous trouble-free mass production campaign on the fast industrial TBS lines, rheological properties of HMAs and micro-properties of NWs can have adverse effects on the line efficiency and continuity. NW fiber orientation and fineness, as well as spun/melt blown composition fabric micro-level properties, are the significant factors to affect the degree of “HMA bleed through.” As a result of this problem, frequent line stops are observed to clean the glue that is being accumulated on the chiller rolls, which significantly reduces the line efficiency. HMA rheology is also important and to eliminate any bleed through the problem; one should have a good understanding of rheology driven potential complications. So, the applied viscosity/temperature should be optimized in accordance with the line speed, line width, NW characteristics and the required open time for a given HMA formulation. In this study, we will show practical aspects of potential preventative actions to minimize the HMA bleed through the problem, which may stem from both HMA rheological properties and NW spun melt/melt blown fiber characteristics.Keywords: breathable, hotmelt, nonwoven, textile backsheet lamination, spun/melt blown
Procedia PDF Downloads 35974 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 21873 Variation of Warp and Binder Yarn Tension across the 3D Weaving Process and its Impact on Tow Tensile Strength
Authors: Reuben Newell, Edward Archer, Alistair McIlhagger, Calvin Ralph
Abstract:
Modern industry has developed a need for innovative 3D composite materials due to their attractive material properties. Composite materials are composed of a fibre reinforcement encased in a polymer matrix. The fibre reinforcement consists of warp, weft and binder yarns or tows woven together into a preform. The mechanical performance of composite material is largely controlled by the properties of the preform. As a result, the bulk of recent textile research has been focused on the design of high-strength preform architectures. Studies looking at optimisation of the weaving process have largely been neglected. It has been reported that yarns experience varying levels of damage during weaving, resulting in filament breakage and ultimately compromised composite mechanical performance. The weaving parameters involved in causing this yarn damage are not fully understood. Recent studies indicate that poor yarn tension control may be an influencing factor. As tension is increased, the yarn-to-yarn and yarn-to-weaving-equipment interactions are heightened, maximising damage. The correlation between yarn tension variation and weaving damage severity has never been adequately researched or quantified. A novel study is needed which accesses the influence of tension variation on the mechanical properties of woven yarns. This study has looked to quantify the variation of yarn tension throughout weaving and sought to link the impact of tension to weaving damage. Multiple yarns were randomly selected, and their tension was measured across the creel and shedding stages of weaving, using a hand-held tension meter. Sections of the same yarn were subsequently cut from the loom machine and tensile tested. A comparison study was made between the tensile strength of pristine and tensioned yarns to determine the induced weaving damage. Yarns from bobbins at the rear of the creel were under the least amount of tension (0.5-2.0N) compared to yarns positioned at the front of the creel (1.5-3.5N). This increase in tension has been linked to the sharp turn in the yarn path between bobbins at the front of the creel and creel I-board. Creel yarns under the lower tension suffered a 3% loss of tensile strength, compared to 7% for the greater tensioned yarns. During shedding, the tension on the yarns was higher than in the creel. The upper shed yarns were exposed to a decreased tension (3.0-4.5N) compared to the lower shed yarns (4.0-5.5N). Shed yarns under the lower tension suffered a 10% loss of tensile strength, compared to 14% for the greater tensioned yarns. Interestingly, the most severely damaged yarn was exposed to both the largest creel and shedding tensions. This study confirms for the first time that yarns under a greater level of tension suffer an increased amount of weaving damage. Significant variation of yarn tension has been identified across the creel and shedding stages of weaving. This leads to a variance of mechanical properties across the woven preform and ultimately the final composite part. The outcome from this study highlights the need for optimised yarn tension control during preform manufacture to minimize yarn-induced weaving damage.Keywords: optimisation of preform manufacture, tensile testing of damaged tows, variation of yarn weaving tension, weaving damage
Procedia PDF Downloads 23672 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 7271 Slope Stabilisation of Highly Fractured Geological Strata Consisting of Mica Schist Layers While Construction of Tunnel Shaft
Authors: Saurabh Sharma
Abstract:
Introduction: The case study deals with the ground stabilisation of Nabi Karim Metro Station in Delhi, India, wherein an extremely complex geology was encountered while excavating the tunnelling shaft for launching Tunnel Boring Machine. The borelog investigation and the Seismic Refraction Technique (SRT) indicated towards the presence of an extremely hard rocky mass from a depth of 3-4 m itself, and accordingly, the Geotechnical Interpretation Report (GIR) concluded the presence of Grade-IV rock from 3m onwards and presence of Grade-III and better rock from 5-6m onwards. Accordingly, it was planned to retain the ground by providing secant piles all around the launching shaft and then excavating the shaft vertically after leaving a berm of 1.5m to prevent secant piles from getting exposed. To retain the side slopes, rock bolting with shotcreting and wire meshing were proposed, which is a normal practice in such strata. However, with the increase in depth of excavation, the rock quality kept on decreasing at an unexpected and surprising pace, with the Grade-III rock mass at 5-6 m converting to conglomerate formation at the depth of 15m. This worsening of geology from high grade rock to slushy conglomerate formation can never be predicted and came as a surprise to even the best geotechnical engineers. Since the excavation had already been cut down vertically to manage the shaft size, the execution was continued with enhanced cautions to stabilise the side slopes. But, when the shaft work was about to finish, a collapse was encountered on one side of the excavation shaft. This collapse was unexpected and surprising since all measures to stabilise the side slopes had been taken after face mapping, and the grid size, diameter, and depth of the rockbolts had already been readjusted to accommodate rock fractures. The above scenario was baffling even to the best geologists and geotechnical engineers, and it was decided that any further slope stabilisation scheme shall have to be designed in such a way to ensure safe completion of works. Accordingly, following revisions to excavation scheme were made: The excavation would be carried while maintaining a slope based on type of soil/rock. The rock bolt type was changed from SN rockbolts to Self Drilling type anchor. The grid size of the bolts changed on real time assessment. the excavation carried out by implementing a ‘Bench Release Approach’. Aggressive Real Time Instrumentation Scheme. Discussion: The above case Study again asserts vitality of correct interpretation of the geological strata and the need of real time revisions of the construction schemes based on the actual site data. The excavation is successfully being done with the above revised scheme, and further details of the Revised Slope Stabilisation Scheme, Instrumentation Schemes, Monitoring results, along with the actual site photographs, shall form the part of the final Paper.Keywords: unconfined compressive strength (ucs), rock mass rating (rmr), rock bolts, self drilling anchors, face mapping of rock, secant pile, shotcrete
Procedia PDF Downloads 6670 High-Resolution Facial Electromyography in Freely Behaving Humans
Authors: Lilah Inzelberg, David Rand, Stanislav Steinberg, Moshe David Pur, Yael Hanein
Abstract:
Human facial expressions carry important psychological and neurological information. Facial expressions involve the co-activation of diverse muscles. They depend strongly on personal affective interpretation and on social context and vary between spontaneous and voluntary activations. Smiling, as a special case, is among the most complex facial emotional expressions, involving no fewer than 7 different unilateral muscles. Despite their ubiquitous nature, smiles remain an elusive and debated topic. Smiles are associated with happiness and greeting on one hand and anger or disgust-masking on the other. Accordingly, while high-resolution recording of muscle activation patterns, in a non-interfering setting, offers exciting opportunities, it remains an unmet challenge, as contemporary surface facial electromyography (EMG) methodologies are cumbersome, restricted to the laboratory settings, and are limited in time and resolution. Here we present a wearable and non-invasive method for objective mapping of facial muscle activation and demonstrate its application in a natural setting. The technology is based on a recently developed dry and soft electrode array, specially designed for surface facial EMG technique. Eighteen healthy volunteers (31.58 ± 3.41 years, 13 females), participated in the study. Surface EMG arrays were adhered to participant left and right cheeks. Participants were instructed to imitate three facial expressions: closing the eyes, wrinkling the nose and smiling voluntary and to watch a funny video while their EMG signal is recorded. We focused on muscles associated with 'enjoyment', 'social' and 'masked' smiles; three categories with distinct social meanings. We developed a customized independent component analysis algorithm to construct the desired facial musculature mapping. First, identification of the Orbicularis oculi and the Levator labii superioris muscles was demonstrated from voluntary expressions. Second, recordings of voluntary and spontaneous smiles were used to locate the Zygomaticus major muscle activated in Duchenne and non-Duchenne smiles. Finally, recording with a wireless device in an unmodified natural work setting revealed expressions of neutral, positive and negative emotions in face-to-face interaction. The algorithm outlined here identifies the activation sources in a subject-specific manner, insensitive to electrode placement and anatomical diversity. Our high-resolution and cross-talk free mapping performances, along with excellent user convenience, open new opportunities for affective processing and objective evaluation of facial expressivity, objective psychological and neurological assessment as well as gaming, virtual reality, bio-feedback and brain-machine interface applications.Keywords: affective expressions, affective processing, facial EMG, high-resolution electromyography, independent component analysis, wireless electrodes
Procedia PDF Downloads 24669 Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach
Authors: Mogale T. E., Ayisi K. K., Munjonji L., Kifle Y. G.
Abstract:
Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province.Keywords: cowpea, climate-smart, grain sorghum, intercropping
Procedia PDF Downloads 22168 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 16467 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites
Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira
Abstract:
The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites
Procedia PDF Downloads 18766 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders
Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob
Abstract:
Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.Keywords: ASD, social skills, cognitive training, mobile app
Procedia PDF Downloads 21365 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites
Authors: Mohammad M. Khan, Pankaj Agarwal
Abstract:
The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM
Procedia PDF Downloads 15064 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 28963 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza
Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue
Abstract:
Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.Keywords: COVID-19, Fastai, influenza, transfer network
Procedia PDF Downloads 14262 An Efficient Process Analysis and Control Method for Tire Mixing Operation
Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park
Abstract:
Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process
Procedia PDF Downloads 26561 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin
Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes
Abstract:
Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.Keywords: vildagliptin, spray congealing, microparticles, controlled release
Procedia PDF Downloads 12160 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 13559 Unmasking Virtual Empathy: A Philosophical Examination of AI-Mediated Emotional Practices in Healthcare
Authors: Eliana Bergamin
Abstract:
This philosophical inquiry, influenced by the seminal works of Annemarie Mol and Jeannette Pols, critically examines the transformative impact of artificial intelligence (AI) on emotional caregiving practices within virtual healthcare. Rooted in the traditions of philosophy of care, philosophy of emotions, and applied philosophy, this study seeks to unravel nuanced shifts in the moral and emotional fabric of healthcare mediated by AI-powered technologies. Departing from traditional empirical studies, the approach embraces the foundational principles of care ethics and phenomenology, offering a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. At its core, this research addresses the introduction of AI-powered technologies mediating emotional and care practices in the healthcare sector. By drawing on Mol and Pols' insights, the study offers a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. Anchored in ethnographic research within a pioneering private healthcare company in the Netherlands, this critical philosophical inquiry provides a unique lens into the dynamics of AI-mediated emotional practices. The study employs in-depth, semi-structured interviews with virtual caregivers and care receivers alongside ongoing ethnographic observations spanning approximately two and a half months. Delving into the lived experiences of those at the forefront of this technological evolution, the research aims to unravel subtle shifts in the emotional and moral landscape of healthcare, critically examining the implications of AI in reshaping the philosophy of care and human connection in virtual healthcare. Inspired by Mol and Pols' relational approach, the study prioritizes the lived experiences of individuals within the virtual healthcare landscape, offering a deeper understanding of the intertwining of technology, emotions, and the philosophy of care. In the realm of philosophy of care, the research elucidates how virtual tools, particularly those driven by AI, mediate emotions such as empathy, sympathy, and compassion—the bedrock of caregiving. Focusing on emotional nuances, the study contributes to the broader discourse on the ethics of care in the context of technological mediation. In the philosophy of emotions, the investigation examines how the introduction of AI alters the phenomenology of emotional experiences in caregiving. Exploring the interplay between human emotions and machine-mediated interactions, the nuanced analysis discerns implications for both caregivers and caretakers, contributing to the evolving understanding of emotional practices in a technologically mediated healthcare environment. Within applied philosophy, the study transcends empirical observations, positioning itself as a reflective exploration of the moral implications of AI in healthcare. The findings are intended to inform ethical considerations and policy formulations, bridging the gap between technological advancements and the enduring values of caregiving. In conclusion, this focused philosophical inquiry aims to provide a foundational understanding of the evolving landscape of virtual healthcare, drawing on the works of Mol and Pols to illuminate the essence of human connection, care, and empathy amid technological advancements.Keywords: applied philosophy, artificial intelligence, healthcare, philosophy of care, philosophy of emotions
Procedia PDF Downloads 58