Search results for: dual barge lifting operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3582

Search results for: dual barge lifting operation

822 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant

Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala

Abstract:

Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.

Keywords: candlenut shells, filtration, nutshell filter, pecan shells, walnut shells

Procedia PDF Downloads 89
821 Regulation Aspects for a Radioisotope Production Installation in Brazil

Authors: Rian O. Miranda, Lidia V. de Sa, Julio C. Suita

Abstract:

The Brazilian Nuclear Energy Commission (CNEN) is the main manufacturer of radiopharmaceuticals in Brazil. The Nuclear Engineering Institute (IEN), located at Rio de Janeiro, is one of its main centers of research and production, attending public and private hospitals in the state. This radiopharmaceutical production is used in diagnostic and therapy procedures and allows one and a half million nuclear medicine procedures annually. Despite this, the country is not self-sufficient to meet national demand, creating the need for importation and consequent dependence on other countries. However, IEN facilities were designed in the 60's, and today its structure is inadequate in relation to the good manufacturing practices established by sanitary regulator (ANVISA) and radiological protection leading to the need for a new project. In order to adapt and increase production in the country, a new plant will be built and integrated to the existing facilities with a new 30 MeV Cyclotron that is actually in project detailing process. Thus, it is proposed to survey current CNEN and ANVISA standards for radiopharmaceutical production facilities, as well as the radiological protection analysis of each area of the plant, following good manufacturing practices recommendations adopted nationally besides licensing exigencies for radioactive facilities. In this way, the main requirements for proper operation, equipment location, building materials, area classification, and maintenance program have been implemented. The access controls, interlocks, segregation zones and pass-through boxes integrated into the project were also analyzed. As a result, IEN will in future have the flexibility to produce all necessary radioisotopes for nuclear medicine application, more efficiently by simultaneously bombarding two targets, allowing the simultaneous production of two different radioisotopes, minimizing radiation exposure and saving operating costs.

Keywords: cyclotron, legislation, norms, production, radiopharmaceuticals

Procedia PDF Downloads 116
820 The Development of Nursing Model for Pregnant Women to Prevention of Early Postpartum Hemorrhage

Authors: Wadsana Sarakarn, Pimonpan Charoensri, Baliya Chaiyara

Abstract:

Objectives: To study the outcomes of the developed nursing model to prevent early postpartum hemorrhage (PPH). Materials and Methods: The analytical study was conducted in Sunpasitthiprasong Hospital during October 1st, 2015, until May 31st, 2017. After review the prevalence, risk factors, and outcomes of postpartum hemorrhage of the parturient who gave birth in Sunpasitthiprasong Hospital, the nursing model was developed under research regulation of Kemmis&McTaggart using 4 steps of operating procedures: 1) analyzing problem situation and gathering 2) creating the plan 3) noticing and performing 4) reflecting the result of the operation. The nursing model consisted of the screening tools for risk factors associated with PPH, the clinical nursing practice guideline (CNPG), and the collecting bag for measuring postpartum blood loss. Primary outcome was early postpartum hemorrhage. Secondary outcomes were postpartum hysterectomy, maternal mortality, personnel’s practice, knowledge, and satisfaction of the nursing model. The data were analyzed by using content analysis for qualitative data and descriptive statistics for quantitative data. Results: Before using the nursing model, the prevalence of early postpartum hemorrhage was under estimated (2.97%). There were 5 cases of postpartum hysterectomy and 2 cases of maternal death due to postpartum hemorrhage. During the study period, there was 22.7% prevalence of postpartum hemorrhage among 220 pregnant women who were vaginally delivered at Sunpasitthiprasong Hospital. No maternal death or postpartum hysterectomy was reported after using the nursing model. Among 16 registered nurses at the delivery room who evaluated using of the nursing model, they reported the high level of practice, knowledge, and satisfaction Conclusion: The nursing model for the prevention of early PPH is effective to decrease early PPH and other serious complications.

Keywords: the development of a nursing model, prevention of postpartum hemorrhage, pregnant women, postpartum hemorrhage

Procedia PDF Downloads 77
819 Valuing Social Sustainability in Agriculture: An Approach Based on Social Outputs’ Shadow Prices

Authors: Amer Ait Sidhoum

Abstract:

Interest in sustainability has gained ground among practitioners, academics and policy-makers due to growing stakeholders’ awareness of environmental and social concerns. This is particularly true for agriculture. However, relatively little research has been conducted on the quantification of social sustainability and the contribution of social issues to the agricultural production efficiency. This research's main objective is to propose a method for evaluating prices of social outputs, more precisely shadow prices, by allowing for the stochastic nature of agricultural production that is to say for production uncertainty. In this article, the assessment of social outputs’ shadow prices is conducted within the methodological framework of nonparametric Data Envelopment Analysis (DEA). An output-oriented directional distance function (DDF) is implemented to represent the technology of a sample of Catalan arable crop farms and derive the efficiency scores the overall production technology of our sample is assumed to be the intersection of two different sub-technologies. The first sub-technology models the production of random desirable agricultural outputs, while the second sub-technology reflects the social outcomes from agricultural activities. Once a nonparametric production technology has been represented, the DDF primal approach can be used for efficiency measurement, while shadow prices are drawn from the dual representation of the DDF. Computing shadow prices is a method to assign an economic value to non-marketed social outcomes. Our research uses cross sectional, farm-level data collected in 2015 from a sample of 180 Catalan arable crop farms specialized in the production of cereals, oilseeds and protein (COP) crops. Our results suggest that our sample farms show high performance scores, from 85% for the bad state of nature to 88% for the normal and ideal crop growing conditions. This suggests that farm performance is increasing with an improvement in crop growth conditions. Results also show that average shadow prices of desirable state-contingent output and social outcomes for efficient and inefficient farms are positive, suggesting that the production of desirable marketable outputs and of non-marketable outputs makes a positive contribution to the farm production efficiency. Results also indicate that social outputs’ shadow prices are contingent upon the growing conditions. The shadow prices follow an upward trend as crop-growing conditions improve. This finding suggests that these efficient farms prefer to allocate more resources in the production of desirable outputs than of social outcomes. To our knowledge, this study represents the first attempt to compute shadow prices of social outcomes while accounting for the stochastic nature of the production technology. Our findings suggest that the decision-making process of the efficient farms in dealing with social issues are stochastic and strongly dependent on the growth conditions. This implies that policy-makers should adjust their instruments according to the stochastic environmental conditions. An optimal redistribution of rural development support, by increasing the public payment with the improvement in crop growth conditions, would likely enhance the effectiveness of public policies.

Keywords: data envelopment analysis, shadow prices, social sustainability, sustainable farming

Procedia PDF Downloads 102
818 Comparison of Mechanical Properties of Three Different Orthodontic Latex Elastic Bands Leached with NaOH Solution

Authors: Thipsupar Pureprasert, Niwat Anuwongnukroh, Surachai Dechkunakorn, Surapich Loykulanant, Chaveewan Kongkaew, Wassana Wichai

Abstract:

Objective: Orthodontic elastic bands made from natural rubber continue to be commonly used due to their favorable characteristics. However, there are concerns associated cytotoxicity due to harmful components released during conventional vulcanization (sulfur-based method). With the co-operation of The National Metal and Materials Technology Center (MTEC) and Faculty of Dentistry Mahidol University, a method was introduced to reduce toxic components by leaching the orthodontic elastic bands with NaOH solution. Objectives: To evaluate the mechanical properties of Thai and commercial orthodontic elastic brands (Ormco and W&H) leached with NaOH solution. Material and methods: Three elastic brands (N =30, size ¼ inch, 4.5 oz.) were tested for mechanical properties in terms of initial extension force, residual force, force loss, breaking strength and maximum displacement using a Universal Testing Machine. Results : Force loss significantly decreased in Thai-LEACH and W&H-LEACH, whereas the values increased in Ormco-LEACH (P < 0.05). The data exhibited a significantly decrease in breaking strength with Thai-LEACH and Ormco-LEACH, whereas all 3 brands revealed a significantly decrease in maximum displacement with the leaching process (P < 0.05). Conclusion: Leaching with NaOH solution is a new method, which can remove toxic components from orthodontic latex elastic bands. However, this process can affect their mechanical properties. Leached elastic bands from Thai had comparable properties with Ormco and have potential to be developed as a promising product.

Keywords: leaching, orthodontic elastics, natural rubber latex, orthodontic

Procedia PDF Downloads 252
817 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong

Abstract:

Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.

Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure

Procedia PDF Downloads 224
816 Improving Electrical Safety through Enhanced Work Permits

Authors: Nuwan Karunarathna, Hemali Seneviratne

Abstract:

Distribution Utilities inherently present electrical hazards for their workers in addition to the general public especially due to bare overhead lines spreading out over a large geographical area. Therefore, certain procedures such as; de-energization, verification of de-energization, isolation, lock-out tag-out and earthing are carried out to ensure safe working conditions when conducting maintenance work on de-energized overhead lines. However, measures must be taken to coordinate the above procedures and to ensure successful and accurate execution of those procedures. Issuing of 'Work Permits' is such a measure that is used by the Distribution Utility considered in this paper. Unfortunately, the Work Permit method adopted by the Distribution Utility concerned here has not been successful in creating the safe working conditions as expected which was evidenced by four (4) number of fatalities of workers due to electrocution occurred in the Distribution Utility from 2016 to 2018. Therefore, this paper attempts to identify deficiencies in the Work Permit method and related contributing factors through careful analysis of the four (4) fatalities and work place practices to rectify the short comings to prevent future incidents. The analysis shows that the present level of coordination between the 'Authorized Person' who issues the work permit and the 'Competent Person' who performs the actual work is grossly inadequate to achieve the intended safe working conditions. The paper identifies the need of active participation of a 'Control Person' who oversees the whole operation from a bird’s eye perspective and recommends further measures that are derived through the analysis of the fatalities to address the identified lapses in the current work permit system.

Keywords: authorized person, competent person, control person, de-energization, distribution utility, isolation, lock-out tag-out, overhead lines, work permit

Procedia PDF Downloads 111
815 Dynamic Determination of Spare Engine Requirements for Air Fighters Integrating Feedback of Operational Information

Authors: Tae Bo Jeon

Abstract:

Korean air force is undertaking a big project to replace prevailing hundreds of old air fighters such as F-4, F-5, KF-16 etc. The task is to develop and produce domestic fighters equipped with 2 complete-type engines each. A large number of engines, however, will be purchased as products from a foreign engine maker. In addition to the fighters themselves, secure the proper number of spare engines serves a significant role in maintaining combat readiness and effectively managing the national defense budget due to high cost. In this paper, we presented a model dynamically updating spare engine requirements. Currently, the military administration purchases all the fighters, engines, and spare engines at acquisition stage and does not have additional procurement processes during the life cycle, 30-40 years. With the assumption that procurement procedure during the operational stage is established, our model starts from the initial estimate of spare engine requirements based on limited information. The model then performs military missions and repair/maintenance works when necessary. During operation, detailed field information - aircraft repair and test, engine repair, planned maintenance, administration time, transportation pipeline between base, field, and depot etc., - should be considered for actual engine requirements. At the end of each year, the performance measure is recorded and proceeds to next year when it shows higher the threshold set. Otherwise, additional engine(s) will be bought and added to the current system. We repeat the process for the life cycle period and compare the results. The proposed model is seen to generate far better results appropriately adding spare engines thus avoiding possible undesirable situations. Our model may well be applied to future air force military operations.

Keywords: DMSMS, operational availability, METRIC, PRS

Procedia PDF Downloads 151
814 Vibration Control of a Horizontally Supported Rotor System by Using a Radial Active Magnetic Bearing

Authors: Vishnu A., Ashesh Saha

Abstract:

The operation of high-speed rotating machinery in industries is accompanied by rotor vibrations due to many factors. One of the primary instability mechanisms in a rotor system is the centrifugal force induced due to the eccentricity of the center of mass away from the center of rotation. These unwanted vibrations may lead to catastrophic fatigue failure. So, there is a need to control these rotor vibrations. In this work, control of rotor vibrations by using a 4-pole Radial Active Magnetic Bearing (RAMB) as an actuator is analysed. A continuous rotor system model is considered for the analysis. Several important factors, like the gyroscopic effect and rotary inertia of the shaft and disc, are incorporated into this model. The large deflection of the shaft and the restriction to axial motion of the shaft at the bearings result in nonlinearities in the system governing equation. The rotor system is modeled in such a way that the system dynamics can be related to the geometric and material properties of the shaft and disc. The mathematical model of the rotor system is developed by incorporating the control forces generated by the RAMB. A simple PD controller is used for the attenuation of system vibrations. An analytical expression for the amplitude and phase equations is derived using the Method of Multiple Scales (MMS). Analytical results are verified with the numerical results obtained using an ‘ode’ solver in-built into MATLAB Software. The control force is found to be effective in attenuating the system vibrations. The multi-valued solutions leading to the jump phenomenon are also eliminated with a proper choice of control gains. Most interestingly, the shape of the backbone curves can also be altered for certain values of control parameters.

Keywords: rotor dynamics, continuous rotor system model, active magnetic bearing, PD controller, method of multiple scales, backbone curve

Procedia PDF Downloads 60
813 Understanding the Construction of Social Enterprises in India: Through Identity and Context of Social Entrepreneurs

Authors: K. Bose

Abstract:

India is one of the largest democracies in the global south, which demonstrates the highest social enterprise activities in the subcontinent. Although there has been a meteoric rise in social enterprise activities, it is not a new phenomenon, as it dates back to Vinoba Bhave's Land Gift movement in 1950. India also has a rich history of a welfare mix where non-governmental organisations played a significant role in the public welfare provision. Lately, the government’s impetus on entrepreneurship has contributed to a burgeoning social enterprise sector in the country; however, there is a lack in understanding of how social enterprises are constructed in India. Social entrepreneurship as practice has been conceptualised as a multi-dimensional concept, which is predominantly explained through the characteristics of a social entrepreneur. Social enterprise organisation, which is a component of social entrepreneurship practice are also classified through the role of the social entrepreneur; thus making social entrepreneur a vital unit shaping organisation and practice. Hence, individual identity of the social entrepreneur acts as a steering agent for defining organisation and practice. Individual identity does not operate in a vacuum and different isomorphic pressures (resource-rich actors/institutions) leads to negotiation in these identities. Dey and Teasdale's work investigated this identity work of non-profit practitioners within the practice of social enterprises in England. Furthermore, the construction of social enterprises is predominantly understood through two approaches i.e. an institutional logic perspective emerging from Europe and process and outcome perspective derived from the United States. These two approaches explain social enterprise as an inevitable institutional outcome in a linear and simplistic manner. Such linear institutional transition is inferred from structural policy reforms and austerity measures adopted by the government, which led to heightened competition for funds in the non-profit sector. These political and economic challenges were specific to the global north, which is different from transitions experienced in the global south, thus further investigation would help understand social enterprise activities as a contextual phenomenon. There is a growing interest in understanding the role of the context within the entrepreneurship literature, additionally, there is growing recognition in entrepreneurship research that economic behaviour is realised far better within its historical, temporal, institutional, spatial and social context, as these contexts provide boundaries to individuals in terms of opportunities and actions. Social enterprise phenomenon too is realised as contextual phenomenon though it differs from traditional entrepreneurship in terms of its dual mission (social and economic), however, the understanding of the role of context in social entrepreneurship has been limited. Hence, this work in progress study integrates identity work of social entrepreneur and the role of context. It investigates the identities of social entrepreneur and its negotiation within its context. Further, how this negotiated identity transcends into organisational practice in turn shaping how social enterprises are constructed in a specific region. The study employs a qualitative inquiry of semi-structured interviews and ethnographic institutionalism. Interviews were analysed using critical discourse analysis and the preliminary outcomes are currently a work in progress.

Keywords: context, Dey and Teasdale, identity, social entrepreneurs, social enterprise, social entrepreneurship

Procedia PDF Downloads 157
812 Design Components and Reliability Aspects of Municipal Waste Water and SEIG Based Micro Hydro Power Plant

Authors: R. K. Saket

Abstract:

This paper presents design aspects and probabilistic approach for generation reliability evaluation of an alternative resource: municipal waste water based micro hydro power generation system. Annual and daily flow duration curves have been obtained for design, installation, development, scientific analysis and reliability evaluation of the MHPP. The hydro potential of the waste water flowing through sewage system of the BHU campus has been determined to produce annual flow duration and daily flow duration curves by ordering the recorded water flows from maximum to minimum values. Design pressure, the roughness of the pipe’s interior surface, method of joining, weight, ease of installation, accessibility to the sewage system, design life, maintenance, weather conditions, availability of material, related cost and likelihood of structural damage have been considered for design of a particular penstock for reliable operation of the MHPP. A MHPGS based on MWW and SEIG is designed, developed, and practically implemented to provide reliable electric energy to suitable load in the campus of the Banaras Hindu University, Varanasi, (UP), India. Generation reliability evaluation of the developed MHPP using Gaussian distribution approach, safety factor concept, peak load consideration and Simpson 1/3rd rule has presented in this paper.

Keywords: self excited induction generator, annual and daily flow duration curve, sewage system, municipal waste water, reliability evaluation, Gaussian distribution, Simpson 1/3rd rule

Procedia PDF Downloads 540
811 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 36
810 Experimental Study and Numerical Simulation of the Reaction and Flow on the Membrane Wall of Entrained Flow Gasifier

Authors: Jianliang Xu, Zhenghua Dai, Zhongjie Shen, Haifeng Liu, Fuchen Wang

Abstract:

In an entrained flow gasifier, the combustible components are converted into the gas phase, and the mineral content is converted into ash. Most of the ash particles or droplets are deposited on the refractory or membrane wall and form a slag layer that flows down to the quenching system. The captured particle reaction process and slag flow and phase transformation play an important role in gasifier performance and safe and stable operation. The reaction characteristic of captured char particles on the molten slag had been studied by applied a high-temperature stage microscope. The gasification process of captured chars with CO2 on the slag surface was observed and recorded, compared to the original char gasification. The particle size evolution, heat transfer process are discussed, and the gasification reaction index of the capture char particle are modeled. Molten slag layer promoted the char reactivity from the analysis of reaction index, Coupled with heat transfer analysis, shrinking particle model (SPM) was applied and modified to predict the gasification time at carbon conversion of 0.9, and results showed an agreement with the experimental data. A comprehensive model with gas-particle-slag flow and reaction models was used to model the different industry gasifier. The carbon conversion information in the spatial space and slag layer surface are investigated. The slag flow characteristic, such as slag velocity, molten slag thickness, slag temperature distribution on the membrane wall and refractory brick are discussed.

Keywords: char, slag, numerical simulation, gasification, wall reaction, membrane wall

Procedia PDF Downloads 284
809 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 276
808 Effect of thermal aging on Low Cycle Fatigue of Alloy 690

Authors: Kushal Gowda Jayaram, Joseph Huret, Jonathan Quibel, Walter-John Chitty, Gilbert Henaff

Abstract:

Thermal aging is one of the concerns for the long-term operation of nuclear power plants. Indeed, components in the primary circuit undergo thermal aging while exposed to the chemically active environment of Pressurized Water Reactors (PWRs) over time. Among the materials used in the reactor components, Alloy 690 can be found in some critical components for nuclear safety. Despite its importance, research on the effect of thermal aging on the microstructural changes and low cycle fatigue (LCF) behavior of Alloy 690 remains limited. This study aims to assess the impact of thermal aging on the fatigue life of Alloy 690. The as-received sample underwent aging at 420°C for 4000 hours, representing the equivalent aging of 60 years in reactor working conditions. First, the characterization of the area and density of intergranular and intragranular precipitates was performed to understand the microstructural changes in the aged specimen. Then, low cycle fatigue tests were conducted on the as received and aged samples at varying strain amplitudes. To investigate the influence of thermal aging on the fatigue behavior of Alloy 690, fracture surfaces were analyzed to estimate fatigue crack growth rates based on striation spacing measurements. Additionally, the axially cut fractured samples have undergone analysis using Electron Backscatter Diffraction (EBSD) to understand the effect of aging on strain localization near the crack path. Results indicate that while the characterization of the area and density of intergranular precipitates in the aged specimen (for 2000 hours, approximately 30 years) showed no significant changes, there was a slight increase in the area and density of intragranular precipitates under the same conditions.

Keywords: alloy 690, thermal aging, low cycle fatigue, precipitates

Procedia PDF Downloads 20
807 Creativity as a National System: An Exploratory Model towards Enhance Innovation Ecosystems

Authors: Oscar Javier Montiel Mendez

Abstract:

The link between knowledge-creativity-innovation-entrepreneurship is well established, and broadly emphasized the importance of national innovation systems (NIS) as an approach stresses that the flow of information and technology among people, organizations and institutions are key to its process. Understanding the linkages among the actors involved in innovation is relevant to NIS. Creativity is supposed to fuel NIS, mainly focusing on a personal, group or organizational level, leaving aside the fourth one, as a national system. It is suggested that NIS takes Creativity for granted, an ex-ante stage already solved through some mechanisms, like programs for nurturing it at elementary and secondary schools, universities, or public/organizational specific programs. Or worse, that the individual already has this competence, and that the elements of the NIS will communicate between in a way that will lead to the creation of S curves, with an impact on national systems/programs on entrepreneurship, clusters, and the economy. But creativity constantly appears at any time during NIS, being the key input. Under an initial, exploratory, focused and refined literature review, based on Csikszentmihalyi’s systemic model, Amabile's componential theory, Kaufman and Beghetto’s 4C model, and the OECD’s (Organisation for Economic Co-operation and Development) NIS model (expanded), an NCS theoretical model is elaborated. Its suggested that its implementation could become a significant factor helping strengthen local, regional and national economies. The results also suggest that the establishment of a national creativity system (NCS), something that appears not been previously addressed, as a strategic/vital companion for a NIS, installing it not only as a national education strategy, but as its foundation, managing it and measuring its impact on NIS, entrepreneurship and the rest of the ecosystem, could make more effective public policies. Likewise, it should have a beneficial impact on the efforts of all the stakeholders involved and should help prevent some of the possible failures that NIS present.

Keywords: national creativity system, national innovation system, entrepreneurship ecosystem, systemic creativity

Procedia PDF Downloads 396
806 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 43
805 Acute Cartilage Defects of the Knee Treated With Chondral Restoration Procedures and Patellofemoral Stabilisation

Authors: John Scanlon, Antony Raymond, Randeep Aujla, Peter D’Alessandro, Satyen Gohil

Abstract:

Background: The incidence of significant acute chondral injuries with patella dislocation is around 10-15%. It is accepted that chondral procedures should only be performed in the presence of joint stability Methods:Patients were identified from surgeon/hospital logs. Patient demographics, lesion size and location, surgical procedure, patient reported outcome measures, post-operative MR imaging, and complications were recorded. PROMs and patient satisfaction was obtained. Results:20 knees (18 patients) were included. Mean age was 18.6 years (range; 11-39), and the mean follow-up was 16.6 months (range; 2-70). The defect locations were the lateral femoral condyle (9/20; 45%), patella (9/20; 45%), medial femoral condyle (1/20; 5%) and the trochlea (1/20; 5%). The mean defect size was 2.6cm2. Twelve knees were treated with cartilage fixation, 5 with microfracture, and 3 with OATS. At follow up, the overall mean Lysholm score was 77.4 (± 17.1), with no chondral regenerative procedure being statistically superior. There was no difference in Lysholm scores between those patients having acute medial patellofemoral ligament reconstruction versus medial soft tissue plication (p=0.59). Five (25%) knees required re-operation (one arthroscopic arthrolysis; one patella chondroplasty; two removal of loose bodies; one implant adjustment). Overall, 90% responded as being satisfied with surgery. Conclusion: Our aggressive pathway to identify and treat acute cartilage defects with early operative intervention and patella stabilisation has shown high rates of satisfaction and Lysholm scores. The full range of chondral restoration options should be considered by surgeons managing these patients.

Keywords: patella dislocation, chondral restoration, knee, patella stabilisation

Procedia PDF Downloads 105
804 Analysis of Solid Waste Management Practices and the Implications for Human Health and the Environment: A Case Study of Kayamandi Informal Settlement

Authors: Peter Iyobosa Asemota

Abstract:

This study on solid waste management practices addressed aspects of environmental and health impacts resulting from poor management of solid waste. The study was occasioned by the observed rate and volume of illegal and indiscriminate dumping of solid waste materials especially in informal settlements. The main focus of this study was to establish the impact of waste management practices on human health and the environment. The study, therefore, presents a critical analysis of the state of solid waste management in the study area and the implications for human health and the environment. The study was carried out in Kayamandi informal settlement within Stellenbosch municipality. The sustainable management of solid waste is very important in order to minimize the environmental and public health risks associated with improper solid waste management. There is no denying the fact that the problems of waste management will become critical as time goes on because of improper and inefficient waste management practices. Towns and cities exhibit the burdens of waste management which is a characteristics feature of most African cities. The study critically assess the implementation of waste management practices by the residents of the informal settlement; identify the factors affecting management issues in the operation of solid waste management system by the municipality; identify factors militating against the implementation of waste management policies and legislation. Furthermore, a waste assessment study was carried out to assess the generation; composition of the waste stream and also determine the attitudes and behavior of the residents with regard to waste management practices. Findings from the study revealed that Kayamandi is not different from other informal settlements with regards to waste management. People are of the opinion that solid waste management is the sole responsibility of municipal authorities and as such, the government should be responsible for bearing the cost of solid waste management.

Keywords: environment, waste, waste composition, waste stream, policy, waste categories, sanitary landfill, waste collection, integrated solid waste management

Procedia PDF Downloads 667
803 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches

Authors: S. Shakibaei, P. Alpkokin

Abstract:

The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.

Keywords: deregulation, high-speed railway, liberalization, privatization, public-private partnership

Procedia PDF Downloads 149
802 Antecedents of MNE Performance and Managing Firm-Specific and Country-Specific Advantages: An Empirical Study of Optoelectronics Industry in Taiwan

Authors: Jyh-Yi Shih, Chie-Bein Chen, Kuang-Yi Lin, Yu-Wei Huang

Abstract:

Because of the trend toward globalization, Taiwanese companies have gradually focused more on overseas market operations. Overseas market performance has gradually increased as a proportion of Taiwanese companies’ total business revenues. Existing international investment theories cannot explain numerous new phenomena in this domain. Opinions are inconsistent, and contradictory positions exist regarding the antecedents of multinational enterprise (MNE) performance. This study applied contemporary internalization theory to establish and extend approaches adopted by previous relevant studies. In the context of the overseas market, the influence that MNE investment in research and development (R&D) and marketing has on enterprise performance was investigated from the firm-specific advantages (FSAs) and country-specific advantages (CSAs) perspectives. CSAs and internationalization speed were addressed as moderators, and hypotheses regarding how internationalization and performance were achieved through MNE overseas market operation were explored to ensure the completeness of the investigation. The list of enterprises was sourced from the Taiwan Economic Journal. After examining the relevant data, the following conclusions were obtained: (a) The relationship between the level of FSAs in R&D and enterprise performance exhibited an S-shaped curve. (b) The relationship between the level of FSAs in marketing and enterprise performance displayed a U-shaped curve. (c) The extent to which potential CFAs were obtained positively moderated the relationship between enterprise investment in R&D to gain FSAs and MNE performance. (d) Internationalization speed positively moderated the relationship between MNEs and enterprise investment in R&D and marketing to gain FSAs.

Keywords: multinational corporation, firm-specific advantages, country-specific advantages, international speed

Procedia PDF Downloads 368
801 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 143
800 Opposed Piston Engine Crankshaft Strength Calculation Using Finite Element Method

Authors: Konrad Pietrykowski, Michał Gęca, Michał Bialy

Abstract:

The paper presents the results of the crankshaft strength simulation. The crankshaft was taken from the opposed piston engine. Calculations were made using finite element method (FEM) in Abaqus software. This program allows to perform strength tests of individual machine parts as well as their assemblies. The crankshaft that was used in the calculations will be used in the two-stroke aviation research aircraft engine. The assumptions for the calculations were obtained from the AVL Boost software, from one-dimensional engine cycle model and from the multibody model using the method developed in the MSC Adams software. The research engine will be equipped with 3 combustion chambers and two crankshafts. In order to shorten the calculation time, only one crankcase analysis was performed. The cut of the shaft has been selected with the greatest forces resulting from the engine operation. Calculations were made for two cases. For maximum piston force when maximum bending load occurs and for the maximum torque. Cast iron material was adopted. For this material, Poisson's number, density, and Young's modulus were determined. The computational grid contained of 1,977,473 Tet elements. This type of elements was chosen because of the complex design of the crankshaft. Results are presented in the form of stress distributions maps and displacements on the surface and inside the geometry of the shaft. The results show the places of tension stresses, however, no stresses are exceeded at any place. The shaft can thus be applied to the engine in its present form. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft diesel engine, crankshaft, finite element method, two-stroke engine

Procedia PDF Downloads 165
799 3D Dentofacial Surgery Full Planning Procedures

Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.

Abstract:

The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.

Keywords: 3D computing, image processing, image registry, image reconstruction

Procedia PDF Downloads 182
798 Stability of Porous SiC Based Materials under Relevant Conditions of Radiation and Temperature

Authors: Marta Malo, Carlota Soto, Carmen García-Rosales, Teresa Hernández

Abstract:

SiC based composites are candidates for possible use as structural and functional materials in the future fusion reactors, the main role is intended for the blanket modules. In the blanket, the neutrons produced in the fusion reaction slow down and their energy is transformed into heat in order to finally generate electrical power. In the blanket design named Dual Coolant Lead Lithium (DCLL), a PbLi alloy for power conversion and tritium breeding circulates inside hollow channels called Flow Channel Inserts (FCIs). These FCI must protect the steel structures against the highly corrosive PbLi liquid and the high temperatures, but also provide electrical insulation in order to minimize magnetohydrodynamic interactions of the flowing liquid metal with the high magnetic field present in a magnetically confined fusion environment. Due to their nominally high temperature and radiation stability as well as corrosion resistance, SiC is the main choice for the flow channel inserts. The significantly lower manufacturing cost presents porous SiC (dense coating is required in order to assure protection against corrosion and as a tritium barrier) as a firm alternative to SiC/SiC composites for this purpose. This application requires the materials to be exposed to high radiation levels and extreme temperatures, conditions for which previous studies have shown noticeable changes in both the microstructure and the electrical properties of different types of silicon carbide. Both initial properties and radiation/temperature induced damage strongly depend on the crystal structure, polytype, impurities/additives that are determined by the fabrication process, so the development of a suitable material requires full control of these variables. For this work, several SiC samples with different percentage of porosity and sintering additives have been manufactured by the so-called sacrificial template method at the Ceit-IK4 Technology Center (San Sebastián, Spain), and characterized at Ciemat (Madrid, Spain). Electrical conductivity was measured as a function of temperature before and after irradiation with 1.8 MeV electrons in the Ciemat HVEC Van de Graaff accelerator up to 140 MGy (~ 2·10 -5 dpa). Radiation-induced conductivity (RIC) was also examined during irradiation at 550 ºC for different dose rates (from 0.5 to 5 kGy/s). Although no significant RIC was found in general for any of the samples, electrical conductivity increase with irradiation dose was observed to occur for some compositions with a linear tendency. However, first results indicate enhanced radiation resistance for coated samples. Preliminary thermogravimetric tests of selected samples, together with posterior XRD analysis allowed interpret radiation-induced modification of the electrical conductivity in terms of changes in the SiC crystalline structure. Further analysis is needed in order to confirm this.

Keywords: DCLL blanket, electrical conductivity, flow channel insert, porous SiC, radiation damage, thermal stability

Procedia PDF Downloads 181
797 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 381
796 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process

Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma

Abstract:

As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.

Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis

Procedia PDF Downloads 85
795 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney

Authors: M. J. Geca, T. Tulwin, A. Majczak

Abstract:

On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: electric energy, photovoltaic system, fuel consumption, CO₂

Procedia PDF Downloads 93
794 Comprehensive Risk Analysis of Decommissioning Activities with Multifaceted Hazard Factors

Authors: Hyeon-Kyo Lim, Hyunjung Kim, Kune-Woo Lee

Abstract:

Decommissioning process of nuclear facilities can be said to consist of a sequence of problem solving activities, partly because there may exist working environments contaminated by radiological exposure, and partly because there may also exist industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not. Furthermore, there are few workers who experienced decommissioning operations a lot in the past. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard since nuclear facilities are too diverse and unique. In the consequence, it is quite inevitable to imagine and assess the whole risk in the situation anticipated one by one. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps, and on the other, a hierarchical risk structure was developed. Then, risk assessment procedure that can elicit individual hazard factors one by one were introduced with reference to the standard operation procedure (SOP) and hierarchical task analysis (HTA). With an assumption of quantification and normalization of individual risks, a technique to estimate relative weight factors was tried by using the conventional Analytic Hierarchical Process (AHP) and its result was reviewed with reference to judgment of experts. Besides, taking the ambiguity of human judgment into consideration, debates based upon fuzzy inference was added with a mathematical case study.

Keywords: decommissioning, risk assessment, analytic hierarchical process (AHP), fuzzy inference

Procedia PDF Downloads 409
793 A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area

Authors: Fameli Kyriaki-Maria, Assimakopoulos D. Vasiliki, Kotroni Vassiliki

Abstract:

The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, no recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.

Keywords: photochemical modelling, urban pollution, greater Athens area, MM5/CAMx

Procedia PDF Downloads 258