Search results for: decision experts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5069

Search results for: decision experts

2339 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks

Procedia PDF Downloads 350
2338 The Extent of Big Data Analysis by the External Auditors

Authors: Iyad Ismail, Fathilatul Abdul Hamid

Abstract:

This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.

Keywords: big data analysis, external auditors, audit reliance, internal audit function

Procedia PDF Downloads 70
2337 The Studies of the Impact of Biomimicry and Sustainability on Urban Design

Authors: Nourhane Mohamed El Haridi, Mostafa El Arabi, Zeyad El Sayad

Abstract:

Biomimicry is defined, by Benyus the natural sciences writer, as imitating or taking inspiration from nature’s forms and processes to solve human problems. Biomimicry is the conscious emulation of life’s genius. As the design community realizes the tremendous impact human constructions have on the world, environmental designers look to new approaches like biomimicry to advance sustainable design. Building leading the declaration made by biomimicry scientists that a full imitation of nature engages form, ecosystem, and process; this paper uses a logic approach to interpret human and environmental wholeness. Designers would benefit from both integrating social theory with environmental thinking and from combining their substantive skills with techniques for getting sustainable biomimic urban design. Integrating biomimicryʹs “Life’s Principles” into a built environment process model will make biomimicry more accessible and thus more widely accepted throughout the industry, and the sustainability of all species will benefit. The Biomimicry Guild hypothesizes the incorporation of these principles, called Lifeʹs Principles, increase the likelihood of sustainability for a respective design, and make it more likely that the design will have a greater impact on sustainability for future generations of all species as mentioned by Benyus in her book. This thesis utilizes Life’s Principles as a foundation for a design process model intended for application on built environment projects at various scales. This paper takes a look at the importance of the integration of biomimicry in urban design to get more sustainable cities and better life, by analyzing the principles of both sustainability and biomimicry, and applying these ideas on futuristic or existing cities to make a biomimic sustainable city more healthier and more conductive to life, and get a better biomimic urban design. A group of experts, architects, biologists, scientists, economists and ecologists should work together to face all the financial and designing difficulties, to have better solutions and good innovative ideas for biomimic sustainable urban design, it is not the only solution, but it is one of the best studies for a better future.

Keywords: biomimicry, built environment, sustainability, urban design

Procedia PDF Downloads 523
2336 Statistical and Land Planning Study of Tourist Arrivals in Greece during 2005-2016

Authors: Dimitra Alexiou

Abstract:

During the last 10 years, in spite of the economic crisis, the number of tourists arriving in Greece has increased, particularly during the tourist season from April to October. In this paper, the number of annual tourist arrivals is studied to explore their preferences with regard to the month of travel, the selected destinations, as well the amount of money spent. The collected data are processed with statistical methods, yielding numerical and graphical results. From the computation of statistical parameters and the forecasting with exponential smoothing, useful conclusions are arrived at that can be used by the Greek tourism authorities, as well as by tourist organizations, for planning purposes for the coming years. The results of this paper and the computed forecast can also be used for decision making by private tourist enterprises that are investing in Greece. With regard to the statistical methods, the method of Simple Exponential Smoothing of time series of data is employed. The search for a best forecast for 2017 and 2018 provides the value of the smoothing coefficient. For all statistical computations and graphics Microsoft Excel is used.

Keywords: tourism, statistical methods, exponential smoothing, land spatial planning, economy

Procedia PDF Downloads 265
2335 Teachers' Beliefs and Practices in Designing Negotiated English Lesson Plans

Authors: Joko Nurkamto

Abstract:

A lesson plan is a part of the planning phase in a learning and teaching system framing the scenario of pedagogical activities in the classroom. It informs a decision on what to teach and how to landscape classroom interaction. Regardless of these benefits, the writer has witnessed the fact that lesson plans are viewed merely as a teaching document. Therefore, this paper will explore teachers’ beliefs and practices in designing lesson plans. It focuses primarily on how both teachers and students negotiate lesson plans in which the students are deemed to be the agents of instructional innovations. Additionally, the paper will talk about how such lesson plans are enacted. To investigate these issues, document analysis, in-depth interviews, participant classroom observation, and focus group discussion will be deployed as data collection methods in this explorative case study. The benefits of the paper are to show different roles of lesson plans and to discover different ways to design and enact such plans from a socio-interactional perspective.

Keywords: instructional innovation, learning and teaching system, lesson plan, pedagogical activities, teachers' beliefs and practices

Procedia PDF Downloads 154
2334 Motives and Barriers of Using Airbnb: Findings from Mixed Method Approach

Authors: Ghada Mohammed, Mohamed Abdel Salam, Passent Tantawi

Abstract:

The study aimed to investigate the impact of motives and barriers for Egyptian users to use Airbnb as a platform of peer-to-peer accommodation instead of hotels on overall attitude towards Airbnb. A sequential mixed-methods approach was adopted to this study and it proposed a comprehensive research model adapted from both literature and results of qualitative phase and then tested via an online questionnaire. The findings revealed that, motives, price, home benefits, privacy, and online reviews significantly explained overall attitude towards Airbnb, while the main barriers were respectively: perceived risk and distrust in which they can predict the overall attitude. While from the subjective norms, only social influence can predict behavioral intention to use Airbnb. The study may serve as a practical reference for practitioners as well as researchers when developing programs and strategies to manage Airbnb consumers' needs and decision process. Some of the main conclusions drawn from this study are that variety was one of the major things that users like about Airbnb and the most important motives are the functional ones like price rather than the experiential ones like authenticity.

Keywords: airbnb, barriers, disruptive innovation, motives, sharing economy

Procedia PDF Downloads 147
2333 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence

Authors: Weber-Lewerenz Bianca

Abstract:

Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.

Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation

Procedia PDF Downloads 250
2332 Improving Contributions to the Strengthening of the Legislation Regarding Road Infrastructure Safety Management in Romania, Case Study: Comparison Between the Initial Regulations and the Clarity of the Current Regulations - Trends Regarding the Efficiency

Authors: Corneliu-Ioan Dimitriu, Gheorghe Frățilă

Abstract:

Romania and Bulgaria have high rates of road deaths per million inhabitants. Directive (EU) 2019/1936, known as the RISM Directive, has been transposed into national law by each Member State. The research focuses on the amendments made to Romanian legislation through Government Ordinance no. 3/2022, which aims to improve road safety management on infrastructure. The aim of the research is two-fold: to sensitize the Romanian Government and decision-making entities to develop an integrated and competitive management system and to establish a safe and proactive mobility system that ensures efficient and safe roads. The research includes a critical analysis of European and Romanian legislation, as well as subsequent normative acts related to road infrastructure safety management. Public data from European Union and national authorities, as well as data from the Romanian Road Authority-ARR and Traffic Police database, are utilized. The research methodology involves comparative analysis, criterion analysis, SWOT analysis, and the use of GANTT and WBS diagrams. The Excel tool is employed to process the road accident databases of Romania and Bulgaria. Collaboration with Bulgarian specialists is established to identify common road infrastructure safety issues. The research concludes that the legislative changes have resulted in a relaxation of road safety management in Romania, leading to decreased control over certain management procedures. The amendments to primary and secondary legislation do not meet the current safety requirements for road infrastructure. The research highlights the need for legislative changes and strengthened administrative capacity to enhance road safety. Regional cooperation and the exchange of best practices are emphasized for effective road infrastructure safety management. The research contributes to the theoretical understanding of road infrastructure safety management by analyzing legislative changes and their impact on safety measures. It highlights the importance of an integrated and proactive approach in reducing road accidents and achieving the "zero deaths" objective set by the European Union. Data collection involves accessing public data from relevant authorities and using information from the Romanian Road Authority-ARR and Traffic Police database. Analysis procedures include critical analysis of legislation, comparative analysis of transpositions, criterion analysis, and the use of various diagrams and tools such as SWOT, GANTT, WBS, and Excel. The research addresses the effectiveness of legislative changes in road infrastructure safety management in Romania and the impact on control over management procedures. It also explores the need for strengthened administrative capacity and regional cooperation in addressing road safety issues. The research concludes that the legislative changes made in Romania have not strengthened road safety management and emphasize the need for immediate action, legislative amendments, and enhanced administrative capacity. Collaboration with Bulgarian specialists and the exchange of best practices are recommended for effective road infrastructure safety management. The research contributes to the theoretical understanding of road safety management and provides valuable insights for policymakers and decision-makers in Romania.

Keywords: management, road infrastructure safety, legislation, amendments, collaboration

Procedia PDF Downloads 84
2331 Engaged Employee: Re-Examine the Effects of Psychological Conditions on Employee Outcomes

Authors: Muncharee Phaobthip

Abstract:

In this research, the researcher re-examine the mediating effect of employee engagement between its antecedents and consequences for investigates the relation of leadership practices, employment branding and employee engagement based on social exchange theory. As such the researcher has four objectives as follows: First, to study the effects of leadership practices on employment branding, employee engagement and work intention; second, to examine the effects of employer brand perception on employee engagement and work intention; third, to examine the effects of employee engagement on work intention; and last, forth, the researcher inquires into the respondence of work intention. The researcher constituted a sample population of 535 employees of a Thai hotel chain located in four regions of the Kingdom of Thailand (Thailand). The researcher utilized a mixed-methods approach divided into quantitative and qualitative research investigatory phases, respectively. In the quantitative phase of research investigation, the researcher collected germane data from the 535 members of the sample population through the use of a questionnaire as a research instrument. In the qualitative phase of research investigation, relevant data were obtained through carrying out in-depth interviews with three subgroups of members of the sample population. These three subgroups consisted of twelve hotelier experts, six employees at the administrator level, and operational level employees. Focus group discussions were held with discussants from these three subgroups. Findings are as follows: Leadership practices showed positive effects on employment branding, employee engagement, and work intention. Employment branding displayed positive effects on employee engagement and work intention. Employee engagement had positive effects on work intention. However, in the analysis of the equation, the researcher confirmed that the important role of employee engagement is mediator factor between its antecedent and consequence factors. This provides benefits, in that it augments the body of knowledge devoted to the fostering of employee engagement in respect to psychological conditions. In conclusion, the researcher found that the value co-creation between leaders, employers and employees had positive effects on employee outcomes for lead to business outcomes according to reciprocal rule.

Keywords: antecedents, employee engagement, psychological conditions, work intention

Procedia PDF Downloads 111
2330 Good Supply Chain Management A Factor for Business Performance

Authors: Irina Canco, Amela Malaj

Abstract:

It is evident that there exists a relationship between supply chain management and business performance. Surveys have showed that in many cases the manager's beliefs and expectations on supply chain management do not match the reality of the business. In this context, the study of supply chain issues is of particular importance and interest considering specifically the current period. The economic problems of this period, are present in Albania as well. The complexity of the supply chain focuses on order fulfilment. Therefore, in this paper, attention will be paid to the impact of supply chain management on business performance. The objective of the paper is to find a relationship between the good supply chain management and business performance. This research is based on the results of surveys referring to the experience of successful businesses on issues related to sustainable supply chain management and its synchronization with the provision of products and services required by the final customers. This study clearly evidenced the impact of the speed of meeting customer requirements on AMAZONA performance. This was also confirmed mathematically through one of the decision criteria in conditions of uncertainty—Laplace criterion.

Keywords: supply chain management, AMAZONA, business performance, Laplace criteria

Procedia PDF Downloads 170
2329 A Review of Urban Placemaking Assessment Frameworks

Authors: Amal Abdou, Yasser ElSayed, Nora Selim

Abstract:

Public urban spaces are an essential component in any urban settlement. They are quite important in enhancing the quality of urban life while offering social, health, environmental and economic benefits to a city and its residents. Place-making assessment of public urban spaces has been one of the major guiding principles for urban planning and policymaking, of which the definition and evaluation have become the crucial research topic. It is increasingly being essential to mitigate the undesirable impacts of urbanization in cities while improving public urban space’s resilience to environmental, social, and economic changes. Globally, several place-making assessment tools (PATs) have been developed to make such informed decision-making. They act as a catalyst to increase market demand for sustainable products and services by providing a mechanism for recognizing excellence. Assessing how placemaking can positively contribute to urban environments is critical to inform both the continued development of the place and the way placemaking is done as a practice. Therefore, this study aims to review different themes for assessing urban placemaking in public urban spaces.

Keywords: urban placemaking, public urban spaces, placemaking assessment, literature review

Procedia PDF Downloads 98
2328 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)

Authors: Izadi Banafsheh, Sedaghat Reza

Abstract:

Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.

Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS

Procedia PDF Downloads 286
2327 Holistic Development of Children through Performing Classical Art Forms: A Study in Tamil Nadu, India

Authors: Meera Rajeev Kumar

Abstract:

An overall social, emotional, and cultural development in a child is what a parent expects. There is no point in comparing the generations of 70’s or 80’s with that of the children of today as the trends are changing drastically. Technology has enabled them to become smart as well as over smart in one way or the other. Children today are quite ignorant of today’s values or ethics and are imbibing different cultures around them and ultimately confused on what to follow. The researcher has gained experience in transmitting or imparting the traditional culture through performing arts. It is understood that the children undergo a transformation from what they knew to what the truth is, through learning and experience. Through performing arts, the child develops an emotional, quick learning, abundant creativity, and ultimately self-realisation on what is right and wrong. The child also gains good organising skills, good decision making skills, therefore summing up to a holistic development. The sample study is 50, and a random sampling technique is adopted to differentiate between a normal child and a child learning an art. The study is conducted in Tamil Nadu, in India.

Keywords: creativity, cultural, emotional, empower

Procedia PDF Downloads 202
2326 Improving Public Sectors’ Policy Direction on Large Infrastructure Investment Projects: A Developmental Approach

Authors: Ncedo Cameron Xhala

Abstract:

Several public sector institutions lack policy direction on how to successfully implement their large infrastructure investment projects. It is significant to improve strategic policy direction in public sector institutions in order to improve planning, management and implementation of large infrastructure investment projects. It is significant to improve an understanding of internal and external pressures that exerts pressure on large infrastructure projects. The significance is to fulfill the public sector’s mandate, align the sectors’ scarce resources, stakeholders and to improve project management processes. The study used a case study approach which was underpinned by a constructionist approach. The study used a theoretical sampling technique when selecting study participants, and was followed by a snowball sampling technique that was used to select an identified case study project purposefully. The study was qualitative in nature, collected and analyzed qualitative empirical data from the purposefully selected five subject matter experts and has analyzed the case study documents. The study used a semi-structured interview approach, analysed case study documents in a qualitative approach. The interviews were on a face-to-face basis and were guided by an interview guide with focused questions. The study used a three coding process step comprising of one to three steps when analysing the qualitative empirical data. Findings reveal that an improvement of strategic policy direction in public sector institutions improves the integration in planning, management and on implementation on large infrastructure investment projects. Findings show the importance of understanding the external and internal pressures when implementing public sector’s large infrastructure investment projects. The study concludes that strategic policy direction in public sector institutions results in improvement of planning, financing, delivery, monitoring and evaluation and successful implementation of the public sector’s large infrastructure investment projects.

Keywords: implementation, infrastructure, investment, management

Procedia PDF Downloads 151
2325 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 150
2324 Personalized Intervention through Causal Inference in mHealth

Authors: Anna Guitart Atienza, Ana Fernández del Río, Madhav Nekkar, Jelena Ljubicic, África Periáñez, Eura Shin, Lauren Bellhouse

Abstract:

The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information.

Keywords: causal inference, mHealth, intervention, personalization

Procedia PDF Downloads 132
2323 Consumers’ Attitude towards Marketing Recreational Marijuana

Authors: Nizar Souiden, Riadh Ladhari

Abstract:

Like tobacco and alcohol, recreational marijuana falls under the umbrella of ‘sin’ industries’. Notwithstanding this general negative image surrounding marijuana use, some scholars argue that most of the widely believed claims made about recreational marijuana users are irrelevant and that marijuana use can even improve individuals’ decision-making. This study intends to shed light on this particular product category (i.e., marijuana) often overlooked or portrayed as taboo from a business view. More specifically, it investigates whether legalizing the consumption of recreational marijuana would be perceived as ethical and whether companies/organizations involved in the commercialization of this particular product would be held socially responsible. Based on primary data collected in Canada, this study aims to answer the following questions: 1) What moral thoughts do individuals hold with regard to the consumption of recreational marijuana? 2) How do these moral thoughts determine consumers’ attitude toward the consumption of recreational marijuana? Regardless of the legalization of recreational marijuana in some countries such as Canada, probing people’s opinions, and investigating their attitudes toward the consumption of recreational marijuana is of important interest to different stakeholders such as consumers, public organizations, private businesses, and trade associations.

Keywords: recreational marijuana, moral thoughts, ethics, attitude

Procedia PDF Downloads 146
2322 Psychological Testing in Industrial/Organizational Psychology: Validity and Reliability of Psychological Assessments in the Workplace

Authors: Melissa C. Monney

Abstract:

Psychological testing has been of interest to researchers for many years as useful tools in assessing and diagnosing various disorders as well as to assist in understanding human behavior. However, for over 20 years now, researchers and laypersons alike have been interested in using them for other purposes, such as determining factors in employee selection, promotion, and even termination. In recent years, psychological assessments have been useful in facilitating workplace decision processing, regarding employee circulation within organizations. This literature review explores four of the most commonly used psychological tests in workplace environments, namely cognitive ability, emotional intelligence, integrity, and personality tests, as organizations have used these tests to assess different factors of human behavior as predictive measures of future employee behaviors. The findings suggest that while there is much controversy and debate regarding the validity and reliability of these tests in workplace settings as they were not originally designed for these purposes, the use of such assessments in the workplace has been useful in decreasing costs and employee turnover as well as increase job satisfaction by ensuring the right employees are selected for their roles.

Keywords: cognitive ability, personality testing, predictive validity, workplace behavior

Procedia PDF Downloads 242
2321 Automated Process Quality Monitoring and Diagnostics for Large-Scale Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Continuous monitoring of industrial plants is one of necessary tasks when it comes to ensuring high-quality final products. In terms of monitoring and diagnosis, it is quite critical and important to detect some incipient abnormal events of manufacturing processes in order to improve safety and reliability of operations involved and to reduce related losses. In this work a new multivariate statistical online diagnostic method is presented using a case study. For building some reference models an empirical discriminant model is constructed based on various past operation runs. When a fault is detected on-line, an on-line diagnostic module is initiated. Finally, the status of the current operating conditions is compared with the reference model to make a diagnostic decision. The performance of the presented framework is evaluated using a dataset from complex industrial processes. It has been shown that the proposed diagnostic method outperforms other techniques especially in terms of incipient detection of any faults occurred.

Keywords: data mining, empirical model, on-line diagnostics, process fault, process monitoring

Procedia PDF Downloads 401
2320 Finding Out the Best Place for Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi, Nima Ghasemloo

Abstract:

Iran is a capable zone for earthquake that follows loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System (GIS) has a determining role in disaster management; it can determine the best places for temporary resettling after such a disaster. In this paper the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QGIS software.

Keywords: disaster management, temporary resettlement, earthquake, criteria

Procedia PDF Downloads 464
2319 Financial Instruments Disclosure: A Review of the Literature

Authors: Y. Tahat, T. Dunne, S. Fifield, D. Power

Abstract:

Information about a firm’s usage of Financial Instruments (FIs) plays a very important role in determining its financial position and performance. Yet accounting standard-setters have encountered problems when deciding on the FI-related disclosures which firms must make. The primary objective of this paper is to review the extant literature on FI disclosure. This objective is achieved by surveying the literature on: the corporate usage of FIs; the different accounting standards adopted concerning FIs; and empirical studies on FI disclosure. This review concludes that the current research on FI disclosure has generated a number of useful insights. In particular, the paper reports that: FIs are a very important risk management mechanism in ensuring that companies have the cash available to make value-enhancing investments, however, without a clear set of risk management objectives, using such instruments can be dangerous; accounting standards concerning FIs have resulted in enhanced transparency about the usage of these instruments; and FI-related information is a key input into investors’ decision-making processes. Finally, the paper provides a number of suggestions for future research in the area.

Keywords: financial instruments, financial reporting, accounting standards, value relevance, corporate disclosure

Procedia PDF Downloads 412
2318 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)

Authors: Medjadj Tarek, Ghribi Hayet

Abstract:

This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).

Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management

Procedia PDF Downloads 95
2317 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 146
2316 Comparing Community Health Agents, Physicians and Nurses in Brazil's Family Health Strategy

Authors: Rahbel Rahman, Rogério Meireles Pinto, Margareth Santos Zanchetta

Abstract:

Background: Existing shortcomings of current health-service delivery include poor teamwork, competencies that do not address consumer needs, and episodic rather than continuous care. Brazil’s Sistema Único de Saúde (Unified Health System, UHS) is acknowledged worldwide as a model for delivering community-based care through Estratégia Saúde da Família (FHS; Family Health Strategy) interdisciplinary teams, comprised of Community Health Agents (in Portuguese, Agentes Comunitário de Saude, ACS), nurses, and physicians. FHS teams are mandated to collectively offer clinical care, disease prevention services, vector control, health surveillance and social services. Our study compares medical providers (nurses and physicians) and community-based providers (ACS) on their perceptions of work environment, professional skills, cognitive capacities and job context. Global health administrators and policy makers can leverage on similarities and differences across care providers to develop interprofessional training for community-based primary care. Methods: Cross-sectional data were collected from 168 ACS, 62 nurses and 32 physicians in Brazil. We compared providers’ demographic characteristics (age, race, and gender) and job context variables (caseload, work experience, work proximity to community, the length of commute, and familiarity with the community). Providers perceptions were compared to their work environment (work conditions and work resources), professional skills (consumer-input, interdisciplinary collaboration, efficacy of FHS teams, work-methods and decision-making autonomy), and cognitive capacities (knowledge and skills, skill variety, confidence and perseverance). Descriptive and bi-variate analysis, such as Pearson Chi-square and Analysis of Variance (ANOVA) F-tests, were performed to draw comparisons across providers. Results: Majority of participants were ACS (64%); 24% nurses; and 12% physicians. Majority of nurses and ACS identified as mixed races (ACS, n=85; nurses, n=27); most physicians identified as males (n=16; 52%), and white (n=18; 58%). Physicians were less likely to incorporate consumer-input and demonstrated greater decision-making autonomy than nurses and ACS. ACS reported the highest levels of knowledge and skills but the least confidence compared to nurses and physicians. ACS, nurses, and physicians were efficacious that FHS teams improved the quality of health in their catchment areas, though nurses tend to disagree that interdisciplinary collaboration facilitated their work. Conclusion: To our knowledge, there has been no study comparing key demographic and cognitive variables across ACS, nurses and physicians in the context of their work environment and professional training. We suggest that global health systems can leverage upon the diverse perspectives of providers to implement a community-based primary care model grounded in interprofessional training. Our study underscores the need for in-service trainings to instill reflective skills of providers, improve communication skills of medical providers and curative skills of ACS. Greater autonomy needs to be extended to community based providers to offer care integral to addressing consumer and community needs.

Keywords: global health systems, interdisciplinary health teams, community health agents, community-based care

Procedia PDF Downloads 229
2315 Balloon Analogue Risk Task (BART) Performance Indicators Help Predict Outcomes of Matched Savings Program

Authors: Carlos M. Parra, Matthew Sutherland, Ranjita Poudel

Abstract:

Reduced mental-bandwidth related to low socioeconomic status (low-SES) might lead to impulsivity and risk-taking behavior, which poses as a major hurdle towards asset building (savings) behavior. Understanding the relationship between risk-related personality metrics as well as laboratory risk behavior and real-life savings behavior can help facilitate the development of effective asset building programs, which are vital for mitigating financial vulnerability and income inequality. As such, this study explored the relationship between personality metrics, laboratory behavior in a risky decision-making task and real-life asset building (savings) behaviors among individuals with low-SES from Miami, Florida (FL). Study participants (12 male, 15 female) included racially and ethnically diverse adults (mean age 41.22 ± 12.65 years), with incomplete higher education (18% had High School Diploma, 30% Associates, and 52% Some College), and low annual income (mean $13,872 ± $8020.43). Participants completed eight self-report surveys and played a widely used risky decision-making paradigm called the Balloon Analogue Risk Task (BART). Specifically, participants played three runs of BART (20 trials in each run; total 60 trials). In addition, asset building behavior data was collected for 24 participants who opened and used savings accounts and completed a 6-month savings program that involved monthly matches, and a final reward for completing the savings program without any interim withdrawals. Each participant’s total savings at the end of this program was the main asset building indicator considered. In addition, a new effective use of average pump bet (EUAPB) indicator was developed to characterize each participant’s ability to place winning bets. This indicator takes the ratio of each participant’s total BART earnings to average pump bet (APB) in all 60 trials. Our findings indicated that EUAPB explained more than a third of the variation in total savings among participants. Moreover, participants who managed to obtain BART earnings of at least 30 cents out of their APB, also tended to exhibit better asset building (savings) behavior. In particular, using this criterion to separate participants into high and low EUAPB groups, the nine participants with high EUAPB (mean BART earnings of 35.64 cents per APB) ended up with higher mean total savings ($255.11), while the 15 participants with low EUAPB (mean BART earnings of 22.50 cents per APB) obtained lower mean total savings ($40.01). All mean differences are statistically significant (2-tailed p  .0001) indicating that the relation between higher EUAPB and higher total savings is robust. Overall, these findings can help refine asset building interventions implemented by policy makers and practitioners interested in reducing financial vulnerability among low-SES population. Specifically, by helping identify individuals who are likely to readily take advantage of savings opportunities (such as matched savings programs) and avoiding the stipulation of unnecessary and expensive financial coaching programs to these individuals. This study was funded by J.P. Morgan Chase (JPMC) and carried out by scientists from Florida International University (FIU) in partnership with Catalyst Miami.

Keywords: balloon analogue risk task (BART), matched savings programs, asset building capability, low-SES participants

Procedia PDF Downloads 145
2314 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194
2313 Developing a Systems Dynamics Model for Security Management

Authors: Kuan-Chou Chen

Abstract:

This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions.

Keywords: system thinking, information security systems, security management, simulation

Procedia PDF Downloads 430
2312 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 21
2311 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 117
2310 Labour Standards and Bilateral Migration Flows in ASEAN

Authors: Rusmawati Said, N. Kar Yee, Asmaddy Haris

Abstract:

This study employs a panel data set of ASEAN member states, 17 European Union (EU) countries, 7 American countries and 11 other Asia Pacific countries (China Mainland and Hong Kong SAR are treated as two separated countries) to investigate the role of labour standards in explaining the pattern of bilateral migration flows in ASEAN. Using pooled Ordinary Least Square (OLS) this study found mixed results. The result varies on how indicators were used to measure the level of labour standards in the empirical analysis. In one side, better labour standards (represented by number of strikes and weekly average working hours) promote bilateral migration among the selected countries. On the other side, increase in cases of occupational injuries lead to an increase in bilateral migration, reflecting that worsen in working conditions do not influence the workers’ decision from moving. The finding from this study become important to policy maker as the issues of massive low skilled workers have a significant impact to the role of labour standard in shaping the migration flows.

Keywords: labour standard, migration, ASEAN, economics and financial engineering

Procedia PDF Downloads 411