Search results for: air data system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37409

Search results for: air data system

34709 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 431
34708 An Optimal Algorithm for Finding (R, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (R, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (R, Q) policy which minimizes the expected system costs .

Keywords: (R, Q) policy, stochastic demand, backorders, limited resource, quantity discounts

Procedia PDF Downloads 641
34707 Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology

Authors: Moser Stephan, Lukasser Gerald, Weitlaner Robert

Abstract:

Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company.

Keywords: BIPV, building simulation, optimized control strategy, planning tool

Procedia PDF Downloads 110
34706 Effective Nutrition Label Use on Smartphones

Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu

Abstract:

Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.

Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 373
34705 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 139
34704 Patient Progression at Discharge: A Communication, Coordination, and Accountability Gap among Hospital Teams

Authors: Nana Benma Osei

Abstract:

Patient discharge can be a hectic process. Patients are sometimes sent to the wrong location or forgotten in lounges in the waiting room. This ends up compromising patient care because the delay in picking the patients can affect how they adhere to medication. Patients may fail to take their medication, and this will lead to negative outcomes. The situation highlights the demands of modern-day healthcare, and the use of technology can help in reducing such challenges and in enhancing the patient’s experience, leading to greater satisfaction with the care provided. The paper contains the proposed changes to a healthcare facility by introducing the clinical decision support system, which will be needed to improve coordination and communication during patient discharge. This will be done under Kurt Lewin’s Change Management Model, which recognizes the different phases in the change process. A pilot program is proposed initially before the program can be implemented in the entire organization. This allows for the identification of challenges and ways of managing them. The paper anticipates some of the possible challenges that may arise during implementation, and a multi-disciplinary approach is considered the most effective. Opposition to the change is likely to arise because staff members may lack information on how the changes will affect them and the skills they will need to learn to use the new system. Training will occur before the technology can be implemented. Every member will go for training, and adequate time is allocated for training purposes. A comparison of data will determine whether the project has succeeded.

Keywords: patient discharge, clinical decision support system, communication, collaboration

Procedia PDF Downloads 103
34703 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
34702 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO

Authors: Ouahab Kadri, Leila Hayet Mouss

Abstract:

In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.

Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization

Procedia PDF Downloads 298
34701 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status

Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra

Abstract:

The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.

Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees

Procedia PDF Downloads 115
34700 Educating Children with the Child-Friendly Smartphone Operation System

Authors: Wildan Maulana Wildan, Siti Annisa Rahmayani Icha

Abstract:

Nowadays advances in information technology are needed by all the inhabitants of the earth for the sake of ease all their work, but it is worth to introduced the technological advances in the world of children. Before the technology is growing rapidly, children busy with various of traditional games and have high socialization. Moreover, after it presence, almost all of children spend more their time for playing gadget, It can affect the education of children and will change the character and personality children. However, children also can not be separated with the technology. Because the technology insight knowledge of children will be more extensive. Because the world can not be separated with advances in technology as well as with children, there should be developed a smartphone operating system that is child-friendly. The operating system is able to filter contents that do not deserve children, even in this system there is a reminder of a time study, prayer time and play time for children and there are interactive contents that will help the development of education and children's character. Children need technology, and there are some ways to introduce it to children. We must look at the characteristics of children in different environments. Thus advances in technology can be beneficial to the world children and their parents, and educators do not have to worry about advances in technology. We should be able to take advantage of advances in technology best possible.

Keywords: information technology, smartphone operating system, education, character

Procedia PDF Downloads 513
34699 Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach

Authors: José Carlos Rodríguez, Mario Gómez, Medardo Serna

Abstract:

This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.

Keywords: complex adaptive systems, higher education institutions, Mexico, system dynamics

Procedia PDF Downloads 318
34698 Performance Study of PV Power plants in Algeria

Authors: Razika Ihaddadene, Nabila Ihaddadene

Abstract:

This paper aims to highlight the importance of the application of the IEC 61724 standard in the study of the performance analysis of photovoltaic power plants on a monthly and annual scale. Likewise, the comparison of two photovoltaic power plants with two different climates was carried out in order to determine the effect of climatic parameters on the analysis of photovoltaic performances. All data from the Ain Skhouna and Adrar photovoltaic power plants for 2018 and the data from the Saida1 field for one month in 2019 were used. The results of the performance analysis according to the indicated standard show that the Saida PV power plant performs better than the Adrar PV power plant, which is due to the effect of increasing the ambient temperature. Increasing ambient temperature increases losses decreases system efficiency and performance ratio. It presents a key element in the proper functioning of PV plants.

Keywords: pv power plants, IEC 61724 norm, grid connected pv, algeria

Procedia PDF Downloads 77
34697 The Politics and Consequences of Decentralized Vocational Education: The Modified System of Vocational Studies in Ghana

Authors: Nkrumak Micheal Atta Ofori

Abstract:

The Vocational System is a decentralized Studies System implemented in Ghana as vocation studies strategy for grassroot that focuses on providing individuals with the specific skills, knowledge, and training necessary for a particular trade, craft, profession, or occupation. This article asks how devolution of vocational studies to local level authorities produces responsive and accountable representation and sustainable vocational learning under the vocational Studies System. It focuses on two case studies: Asokore Mampong and Atwima kwanwoma Municipal. Then, the paper asks how senior high school are developing new material and social practices around the vocational studies System to rebuild their livelihoods and socio-economic wellbeing. Here, the article focusses on Kumasi District, drawing lessons for the two other cases. The article shows how the creation of representative groups under the Vocational Studies System provides the democratic space necessary for effective representation of community aspirations. However, due to elite capture, the interests of privilege few people are promoted. The state vocational training fails to devolve relevant and discretionary resources to local teachers and do not follow the prescribed policy processes of the Vocational Studies System. Hence, local teachers are unable to promote responsive and accountable representation. Rural communities continue to show great interest in the Vocational Studies System, but the interest is bias towards gaining access to vocational training schools for advancing studies. There is no active engagement of the locals in vocational training, and hence, the Vocational Studies System exists only to promote individual interest of communities. This article shows how ‘failed’ interventions can gain popular support for rhetoric and individual gains.

Keywords: vocational studies system, devolution of vocational studies, local-level authorities, senior high schools and vocational learning, community aspirations and representation

Procedia PDF Downloads 78
34696 A System Dynamics Model for Assessment of Alternative Energy Policy Measures: A Case of Energy Management System as an Energy Efficiency Policy Tool

Authors: Andra Blumberga, Uldis Bariss, Anna Kubule, Dagnija Blumberga

Abstract:

European Union Energy Efficiency Directive provides a set of binding energy efficiency measures to reach. Each of the member states can use either energy efficiency obligation scheme or alternative policy measures or combination of both. Latvian government has decided to divide savings among obligation scheme (65%) and alternative measures (35%). This decision might lead to significant energy tariff increase hence impact on the national economy. To assess impact of alternative policy measures focusing on energy management scheme based on ISO 50001 and ability to decrease share of obligation scheme a System Dynamics modeling was used. Simulation results show that energy efficiency goal can be met with alternative policy measure to large energy consumers in industrial, tertiary and public sectors by applying the energy tax exemption for implementers of energy management system. A delay in applying alternative policy measures plays very important role in reaching the energy efficiency goal. One year delay in implementation of this policy measure reduces cumulative energy savings from 2016 to 2017 from 5200 GWh to 3000 GWh in 2020.

Keywords: system dynamics, energy efficiency, policy measure, energy management system, obligation scheme

Procedia PDF Downloads 282
34695 Performance Evaluation of Production Schedules Based on Process Mining

Authors: Kwan Hee Han

Abstract:

External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.

Keywords: data mining, event log, process mining, production scheduling

Procedia PDF Downloads 279
34694 Analysis of the Factors Affecting the Public Bicycle Projects in Chinese Cities

Authors: Xiujuan Wang, Weiguo Wang, Lei Yu, Xue Liu

Abstract:

There are many purported benefits of public bike systems, therefore, it has seen a sharp increase since 2008 in Hangzhou, China. However, there are few studies on the public bicycle system in Chinese cities. In order to make recommendations for the development of public bicycle systems, this paper analyzes the influencing factors by using the system dynamics method according to the main characteristics of Chinese cities. The main characteristics of Chinese cities lie in the city size and process of urbanization, traffic mode division, demographic characteristics, bicycle infrastructure and right of way, regime structure. Finally, under the context of Chinese bike sharing systems, these analyses results can help to design some feasible strategies for the planner to the development of the public bicycles.

Keywords: engineering of communication and transportation system, bicycle, public bike, characteristics of Chinese cities, system dynamics

Procedia PDF Downloads 241
34693 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 419
34692 Flocking Swarm of Robots Using Artificial Innate Immune System

Authors: Muneeb Ahmad, Ali Raza

Abstract:

A computational method inspired by the immune system (IS) is presented, leveraging its shared characteristics of robustness, fault tolerance, scalability, and adaptability with swarm intelligence. This method aims to showcase flocking behaviors in a swarm of robots (SR). The innate part of the IS offers a variety of reactive and probabilistic cell functions alongside its self-regulation mechanism which have been translated to enable swarming behaviors. Although, the research is specially focused on flocking behaviors in a variety of simulated environments using e-puck robots in a physics-based simulator (CoppeliaSim); the artificial innate immune system (AIIS) can exhibit other swarm behaviors as well. The effectiveness of the immuno-inspired approach has been established with extensive experimentations, for scalability and adaptability, using standard swarm benchmarks as well as the immunological regulatory functions (i.e., Dendritic Cells’ Maturity and Inflammation). The AIIS-based approach has proved to be a scalable and adaptive solution for emulating the flocking behavior of SR.

Keywords: artificial innate immune system, flocking swarm, immune system, swarm intelligence

Procedia PDF Downloads 104
34691 A DOE Study of Ultrasound Intensified Removal of Phenol

Authors: P. R. Rahul, A. Kannan

Abstract:

Ultrasound-aided adsorption of phenol by Granular Activated Carbon (GAC) was investigated at different frequencies ranging from 35 kHz, 58 kHz, and 192 kHz. Other factors influencing adsorption such as Adsorbent dosage (g/L), the initial concentration of the phenol solution (ppm) and RPM was also considered along with the frequency variable. However, this study involved calorimetric measurements which helped is determining the effect of frequency on the % removal of phenol from the power dissipated to the system was normalized. It was found that low frequency (35 kHz) cavitation effects had a profound influence on the % removal of phenol per unit power. This study also had cavitation mapping of the ultrasonic baths, and it showed that the effect of cavitation on the adsorption system is irrespective of the position of the vessel. Hence, the vessel was placed at the center of the bath. In this study, novel temperature control and monitoring system to make sure that the system is under proper condition while operations. From the BET studies, it was found that there was only 5% increase in the surface area and hence it was concluded that ultrasound doesn’t profoundly alter the equilibrium value of the adsorption system. DOE studies indicated that adsorbent dosage has a higher influence on the % removal in comparison with other factors.

Keywords: ultrasound, adsorption, granulated activated carbon, phenol

Procedia PDF Downloads 283
34690 Disaster and Crisis Management Using Geographical Information System (GIS) during the Operation and Maintenance Stages of the Hyderabad Metro Rail in India

Authors: Sai Rajeev Reddy, Ishita Roy, M. Anji Reddy

Abstract:

The paper describes the importance of preventive measures and immediate Emergency logistics during accidents and unfortunate Disasters for the Hyderabad Metro Rails in their various stages of construction. This is the need of the modern generation where accidents, explosions, attacks and sudden crisis are frequent casualties which take huge tolls of life in the present world. The paper utilizes the workflow and application of Geographical information System (GIS) to provide information about problems and crisis structures for efficient Metro Transportation in the city. The study analyzes the difficulties and problems which cause accidents during operation and maintenance stages of the Metro Rail. The paper focuses upon the intermediate and firsthand information of Crisis with the help of GIS technology to share Disaster data for effective measures by the Cyber Police stations, Emergency Responders, Hospitals and First Aid Centre to act immediately and save lives. The results and conclusions have nevertheless proved very informative and useful for the safety board authorities of the Hyderabad Metro Rail. The operation and Maintenance are integral stages in the development of any Multipurpose transportation Projects and are usually prone to various Disasters and tragedies. Hence, the GIS technologies help in distribution of information among the masses with the web Technologies and advanced software developed to prevent and manage crisis widely and in a cost-benefits manner.

Keywords: Geographical Information System, emergency assessment, accident zones, surveillance

Procedia PDF Downloads 567
34689 Biological Aquaculture System (BAS) Design and Water Quality on Marble Goby (Oxyeleotris marmoratus): A Water Recirculating Technology

Authors: AnnWon Chew, Nik Norulaini Nik Ab Rahman, Mohd Omar Ab Kadir, C. C. Chen, Jaafar Chua

Abstract:

This paper presents an innovative process to solve the ammonia, nitrite and nitrate build-up problem in recirculating system using Biological Aquaculture System (BAS). The novel aspects of the process lie in a series of bioreactors that specially arrange and design to meet the required conditions for water purification. The BAS maximizes the utilization of bio-balls as the ideal surface for beneficial microbes to flourish. It also serves as a physical barrier that traps organic particles, which in turn becomes source for the microbes to perform their work. The operation in the proposed system gives a low concentration and average range of good maintain excellent water quality, i.e., with low levels of ammonia, nitrite, nitrate, a suitable pH range for aquaculture and low turbidity. The BAS thus provides a solution for sustainable small-scale, urban aquaculture operation with a high recovery water and minimal waste disposal.

Keywords: ammonia, bioreactor, Biological Aquaculture System (BAS), bio-balls, water recirculating technology

Procedia PDF Downloads 592
34688 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 110
34687 Fault Tree Analysis (FTA) of CNC Turning Center

Authors: R. B. Patil, B. S. Kothavale, L. Y. Waghmode

Abstract:

Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628.

Keywords: fault tree analysis (FTA), reliability analysis, risk assessment, hazard analysis

Procedia PDF Downloads 414
34686 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215
34685 Effect of Retention Time on Kitchen Wastewater Treatment Using Mixed Algal-Bacterial Consortia

Authors: Keerthi Katam, Abhinav B. Tirunaghari, Vinod Vadithya, Toshiyuki Shimizu, Satoshi Soda, Debraj Bhattacharyya

Abstract:

Researchers worldwide are increasingly focusing on the removal of carbon and nutrient from wastewater using algal-bacterial hybrid systems. Algae produce oxygen during photosynthesis, which is taken up by heterotrophic bacteria for mineralizing organic carbon to carbon dioxide. This phenomenon reduces the net mechanical aeration requirement of aerobic biological wastewater treatment processes. Consequently, the treatment cost is also reduced. Microalgae also participate in the treatment process by taking up nutrient (N, P) from wastewater. Algal biomass, if harvested, can generate value-added by-products. The aim of the present study was to compare the performance of two systems - System A (mixed microalgae and bacteria) and System B (diatoms and bacteria) in treating kitchen wastewater (KWW). The test reactors were operated at five different solid retention times (SRTs) -2, 4, 6, 8, and 10-days in draw-and-fill mode. The KWW was collected daily from the dining hall-kitchen area of the Indian Institute of Technology Hyderabad. The influent and effluent samples were analyzed for total organic carbon (TOC), total nitrogen (TN) using TOC-L analyzer. A colorimetric method was used to analyze anionic surfactant. Phosphorus (P) and chlorophyll were measured by following standard methods. The TOC, TN, and P of KWW were in the range of 113.5 to 740 mg/L, 2 to 22.8 mg/L, and 1 to 4.5 mg/L, respectively. Both the systems gave similar results with 85% of TOC removal and 60% of TN removal at 10-d SRT. However, the anionic surfactant removal in System A was 99% and 60% in System B. The chlorophyll concentration increased with an increase in SRT in both the systems. At 2-d SRT, no chlorophyll was observed in System B, whereas 0.5 mg/L was observed in System A. At 10-d SRT, the chlorophyll concentration in System A was 7.5 mg/L, whereas it was 4.5 mg/L in System B. Although both the systems showed similar performance in treatment, the increase in chlorophyll concentration suggests that System A demonstrated a better algal-bacterial symbiotic relationship in treating KWW than System B.

Keywords: diatoms, microalgae, retention time, wastewater treatment

Procedia PDF Downloads 129
34684 Incorporating Moving Authority Limits Into Driving Advice

Authors: Peng Zhou, Peter Pudney

Abstract:

Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways.

Keywords: railway transportation, energy efficient train operation, optimal train control, safe separation

Procedia PDF Downloads 9
34683 Impact of Out-Of-Pocket Payments on Health Care Finance and Access to Health Care Services: The Case of Health Transformation Program in Turkey

Authors: Bengi Demirci

Abstract:

Out-of-pocket payments have become one of the common models adopted by health care reforms all over the world, and they have serious implications for not only the financial set-up of the health care systems in question but also for the people involved in terms of their access to the health care services provided. On the one hand, out-of-pocket payments are used in raising resources for the finance of the health care system and in decreasing non-essential health care expenses by having a deterrent role on the patients. On the other hand, out-of-pocket payment model causes regressive distribution effect by putting more burdens on the lower income groups and making them refrain from using health care services. Being a relatively incipient country having adopted the out-of-pocket payment model within the context of its Health Transformation Program which has been ongoing since the early 2000s, Turkey provides a good case for re-evaluating the pros and cons of this model in order not to sacrifice equality in access to health care for raising revenue for health care finance and vice versa. Therefore this study aims at analyzing the impact of out-of-pocket payments on the health finance system itself and on the patients’ access to healthcare services in Turkey where out-of-pocket payment model has been in use for a while. In so doing, data showing the revenue obtained from out-of-pocket payments and their share in health care finance are analyzed. In addition to this, data showing the change in the amount of expenditure made by patients on health care services after the adoption of out-of-pocket payments and the change in the use of various health care services in the meanwhile are examined. It is important for the incipient countries like Turkey to be careful in striking the right balance between the objective of cost efficiency and that of equality in accessing health care services while adopting the out-of-pocket payment model.

Keywords: health care access, health care finance, health reform, out-of-pocket payments

Procedia PDF Downloads 372
34682 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 96
34681 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society

Authors: Eliane Ferreira da Silva

Abstract:

This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.

Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building

Procedia PDF Downloads 132
34680 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 97