Search results for: nitrate production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7769

Search results for: nitrate production

5099 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment

Authors: Nabil Al-Zaqri

Abstract:

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.

Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production

Procedia PDF Downloads 142
5098 Economics of Fish-Plantain Integrated Farm Enterprise in Southern Nigeria

Authors: S. O. Obasa, J. A. Soaga, O. I. Afolabi, N. A. Bamidele, O. E. Babalola

Abstract:

Attempt to improve the income of the rural population is a welcome development in Nigeria. Integrated fish-crop farming has been suggested as a means of raising farm income, reducing wastage and mitigating the risk component in production through the complementarity gain. A feeding trial was carried out to investigate the replacement of maize with fermented unripe plantain (Musa paradisiaca) peel meal in the diet of Nile tilapia, Oreochromis niloticus. The economics of the integrated enterprise was assessed using budgetary analysis techniques. The analysis incorporated the material and labour costs as well as the returns from sale of matured fish and plantain. A total of 60 fingerlings of Nile tilapia (1.70±0.1 g) were stocked at 10 per plastic tank. Two iso-nitrogenous diets containing 35% crude protein in which maize meal was replaced by fermented unripe plantain peel meal at 0% (FUP0/Control diet), and 100% (FUP100) were formulated and prepared. The fingerlings were fed at 5% body weight per day for 56 days. Lowest feed conversion ratio of 1.39 in fish fed diet FUP100 was not significantly different (P > 0.05) from the highest 1.42 of fish fed the Control diet. The highest percentage profit of 88.85% in fish fed diet FUP100 was significantly higher than 66.68% in fish fed diet FUP0, while the profit index of 1.89 in fish fed diet FUP100 was significantly different from 1.67 in fish fed diet FUP0. Therefore, fermented unripe plantain peel meal can completely replace maize in the diet of O. niloticus fingerlings. Profitability assessment shows that the net income from the integration was ₦ 463,000 per hectare and the integration resulted to an increase of ₦ 87,750.00 representing a 12.2% increase than in separate production.

Keywords: fish-crop, income, Nile tilapia, waste management

Procedia PDF Downloads 510
5097 Geographical Indication (Gi) as a Means of Protecting Traditional Right of Muga Silk (Antheria Assamensis) of Assam-India

Authors: Niranjan Das

Abstract:

‘Geographical indication’ is a sign which is used on products that have a specific geographical origin and possess qualities or a reputation that are due to that origin. Geographical Indication is primarily granted to agricultural, natural, manufactured, handicrafts originating from a definite geographical territory. It is defined in Article 22(1) of the World Trade Organization's (WTO) 1995 Agreement on ‘Trade-Related Aspects of Intellectual Property Rights (TRIPS)’. Assam is literally a ‘Silk country’ where silk culture is rooted in the rural life and culture of Assamese people. This is the only state in India and the world where Muga silk (Antheraea assamensis) is grown. Out of the total production of India’s Muga silk, Assam has the credit of being the sole producer of this 100 percent output, and thus occupies a unique position in the sericulture map of the world. Muga production has been an effective means for generating gainful employment in rural Assam and it has enormous potential in the context of building the rural economy and generating livelihood of this region. Muga, the unique golden-yellow silk of Assam was granted the ‘Geographical Indication (GI)’ registration in 2007. It is the first item from the state of Assam to obtain the GI tag. Besides manufacturing of Muga Silk cloths, the industry is also giving employment to thousands of people, and the silk industry is playing a leading role in the economy of the state. As Brahmaputra Valley is also known for tourist destination, tourists are visiting the valley every year and now the Muga Silk has reached each corner of the country and also in the other parts of the world. This paper tries to emphasizes how the Geographical Indication tag is protecting the traditional right of the Muga Silk of Assam as it has been practised by the Assamese people since times immemorial.

Keywords: Geographical Indication, environment, Muga silk, traditional right and livelihood

Procedia PDF Downloads 269
5096 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 363
5095 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China

Authors: Lixin Zhao, Genmao Zhou

Abstract:

Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.

Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing

Procedia PDF Downloads 178
5094 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 68
5093 Adapting Hazard Analysis and Critical Control Points (HACCP) Principles to Continuing Professional Education

Authors: Yaroslav Pavlov

Abstract:

In the modern world, ensuring quality has become increasingly important in various fields of human activity. One universal approach to quality management, proven effective in the food industry, is the HACCP (Hazard Analysis and Critical Control Points) concept. Based on principles of preventing potential hazards to consumers at all stages of production, from raw materials to the final product, HACCP offers a systematic approach to identifying, assessing risks, and managing critical control points (CCPs). Initially used primarily for food production, it was later effectively adapted to the food service sector. Implementing HACCP provides organizations with a reliable foundation for improving food safety, covering all links in the food chain from producer to consumer, making it an integral part of modern quality management systems. The main principles of HACCP—hazard identification, CCP determination, effective monitoring procedures, corrective actions, regular checks, and documentation—are universal and can be adapted to other areas. The adaptation of the HACCP concept is relevant for continuing professional education (CPE) with certain reservations. Specifically, it is reasonable to abandon the term ‘hazards’ as deviations in CCPs do not pose dangers, unlike in food production. However, the approach through CCP analysis and the use of HACCP's main principles for educational services are promising. This is primarily because it allows for identifying key CCPs based on the value creation model of a specific educational organization and consequently focusing efforts on specific CCPs to manage the quality of educational services. This methodology can be called the Analysis of Critical Points in Educational Services (ACPES). ACPES offers a similar approach to managing the quality of educational services, focusing on preventing and eliminating potential risks that could negatively impact the educational process, learners' achievement of set educational goals, and ultimately lead to students rejecting the organization's educational services. ACPES adapts proven HACCP principles to educational services, enhancing quality management effectiveness and student satisfaction. ACPES includes identifying potential problems at all stages of the educational process, from initial interest to graduation and career development. In ACPES, the term "hazards" is replaced with "problematic areas," reflecting the specific nature of the educational environment. Special attention is paid to determining CCPs—stages where corrective measures can most effectively prevent or minimize the risk of failing educational goals. The ACPES principles align with HACCP's principles, adjusted for the specificities of CPE. The method of the learner's journey map (variation of Customer Journey Map, CJM) can be used to overcome the complexity of formalizing the production chain in educational services. CJM provides a comprehensive understanding of the learner's experience at each stage, facilitating targeted and effective quality management. Thus, integrating the learner's journey map into ACPES represents a significant extension of the methodology's capabilities, ensuring a comprehensive understanding of the educational process and forming an effective quality management system focused on meeting learners' needs and expectations.

Keywords: quality management, continuing professional education, customer journey map, HACCP

Procedia PDF Downloads 39
5092 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 143
5091 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example

Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen

Abstract:

Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.

Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse

Procedia PDF Downloads 60
5090 Hydrogen Production from Solid Waste of Sago Processing Industries in Indonesia: Effect of Chemical and Biological Pretreatment

Authors: Pratikno Hidayat, Khamdan Cahyari

Abstract:

Hydrogen is the ultimate choice of energy carriers in future. It contents high energy density (42 kJ/g), emits only water vapor during combustion and has high energy conversion up to 50% in fuel cell application. One of the promising methods to produce hydrogen is from organic waste through dark fermentation method. It utilizes sugar-rich organic waste as substrate and hydrogen-producing microorganisms to generate the hydrogen. Solid waste of sago processing industries in Indonesia is one of the promising raw materials for both producing biofuel hydrogen and mitigating the environmental impact due to the waste disposal. This research was meant to investigate the effect of chemical and biological pretreatment i.e. acid treatment and mushroom cultivation toward lignocellulosic waste of these sago industries. Chemical pretreatment was conducted through exposing the waste into acid condition using sulfuric acid (H2SO4) (various molar i.e. 0.2, 0.3, and 0.4 M and various duration of exposure i.e. 30, 60 and 90 minutes). Meanwhile, biological treatment was conducted through utilization of the solid waste as growth media of mushroom (Oyster and Ling-zhi) for 3 months. Dark fermentation was conducted at pH 5.0, temperature 27℃ and atmospheric pressure. It was noticed that chemical and biological pretreatment could improve hydrogen yield with the highest yield at 3.8 ml/g VS (31%v H2). The hydrogen production was successfully performed to generate high percentage of hydrogen, although the yield was still low. This result indicated that the explosion of acid chemical and biological method might need to be extended to improve degradability of the solid waste. However, high percentage of hydrogen was resulted from proper pretreatment of residual sludge of biogas plant to generate hydrogen-producing inoculum.

Keywords: hydrogen, sago waste, chemical, biological, dark fermentation, Indonesia

Procedia PDF Downloads 368
5089 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process

Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani

Abstract:

Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.

Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture

Procedia PDF Downloads 66
5088 Effects of Vitamin C and Spondias mombin Supplementation on Hematology, Growth, Egg Production Traits, and Eggshell Quality in Japanese Quails (Coturnix coturnix japonica) in a Hot-Humid Tropics

Authors: B. O. Oyebanji, I. O. Dudusola, C. T. Ademola, S. A. Olaniyan

Abstract:

A 56 day study was conducted to evaluate the effect of dietary inclusion of Spondias mombin on hematological, growth, egg parameters and egg shell quality of Japanese quails, Cortunix cortunix japonica. One hundred birds were used for this study, and they were allocated randomly into 5 groups and replicated twice. Group 1 animals served as control without inclusion of extract, groups 2, 3, and 4 had 200 mg/kg, 400 mg/kg and 800 mg/kg inclusion of SM, group 5 had 600 mg/kg of vitamin C respectively. The birds were weighed weekly to determine weight change, the blood parameters analyzed at the completion of the experiment were PCV, Hb, RBC WBC, differential WBC count, MCH, MCH, and MCV were afterwards calculated from these parameters. 5 eggs were collected from each group and egg weight, eggshell weight, eggshell diameter, yolk weight, albumen weight, yolk diameter, yolk height, albumen percentage, yolk percentage and shell percentage were determined. There was no significant difference among the group for the hematological parameters measured and calculated. The egg weight and albumen weight of quails on 800 mg/kg was highest of all the groups, all other egg parameters measured showed no significant difference. The birds supplemented with Vitamin C had the highest weight gain (40.8±2.5 g) and the lowest feed conversion ratio (2.25). There was no mortality recorded in all the groups except in the SM800 group with 10% mortality. It can be concluded from this experiment that Vitamin C supplementation has positive effect on quail production in humid tropics and the inclusion of Spondias mombin leaf extract has a dose-dependent toxicity in quails.

Keywords: hematology, quails, Spondias mombin, vitamin C

Procedia PDF Downloads 357
5087 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 387
5086 The Importance of Storage Period on Biogas Potential of Cattle Manure

Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim

Abstract:

Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.

Keywords: storage period, cattle manure, biogas potential, microbial analysis

Procedia PDF Downloads 174
5085 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 190
5084 Pharmaceutical Science and Development in Drug Research

Authors: Adegoke Yinka Adebayo

Abstract:

An understanding of the critical product attributes that impact on in vivo performance is key to the production of safe and effective medicines. Thus, a key driver for our research is the development of new basic science and technology underpinning the development of new pharmaceutical products. Research includes the structure and properties of drugs and excipients, biopharmaceutical characterisation, pharmaceutical processing and technology and formulation and analysis.

Keywords: drug discovery, drug development, drug delivery

Procedia PDF Downloads 495
5083 Oestrous Synchronization: A Technical Note for Nepalese Goat Farmers

Authors: Pravin Mishra, Ajeet K. Jha, Pankaj K. Jha

Abstract:

This technical note is aimed at providing a brief information on goat breeds, its breeding seasonality and different methods of oestrous synchronization for Nepalese goat farmers. It was observed that, these goats are seasonal breeder and showed oestrous during mainly two season; December- February and March-May. This leads to an irregular supply of goat to market and a wide variations in market price. Oestrus synchronization is only an alternative reproductive tool to overcome this scarcity by enhancing production and productivity. This technique enables goat producers breed their animals within a short pre-determined period and permits breeding round the year. The principle of oestrus synchronisation is based on controlling of the luteal phase of the oestrous cycle. There are two basic mechanisms; one by shortening the luteal life (premature luteolysis) using prostaglandins or its analogues and the other by prolonging the luteal life (simulating the activity of natural progesterone produced by the corpus luteum) using exogenous progesterone source. The former is easy to apply and only effective during breeding season, whereas the latter is advantageous when the reproductive status of the goat flock is unknown. The common hormonal products easily available in Nepal includes; prostaglandins or its analogues (Oviprost® Dinoprost® Lutalyse® and Estrumate®), exogenous progesterone (Fluorogestone acetate® and Controlled Internal Drug Release®, CIDR) devices). However, before practicing the oestrous synchronization protocol, it needs to be validated for oestrous response rate, time to onset of oestrous, duration of oestrous and pregnancy rates at farmer’s field. In conclusion, application of oestrus synchronisation practice enhanced goat production and surplus the goat meat demand in Nepal.

Keywords: goat, Nepal, oestrous, synchronization

Procedia PDF Downloads 154
5082 Suitability of Green Macroalgae Porteresia coarctata as a Feed Form Macrobrachium rosenbergii

Authors: Rajrupa Ghosh, Abhijit Mitra

Abstract:

Future use of animal protein sources in prawn feeds is expected to be considerably reduced as a consequence of increasing economical, environmental and safety issues. Of main concern has been the use of expensive marine protein sources, such as fish meal which often results in fouling of water quality and disease outbreak in cultured species. To determine prawn capacity to use practical feeds with plant proteins as replacement ingredients to animal protein sources, 8-months growth trial was conducted in two sets of ponds using juvenile (0.02 gm) Macrobrachium rosenbergii. Among the two sets, one set (comprising of three ponds) is experimental pond included formulated feed prepared with 30% Porteresia coarctata dust along with other general ingredients and another set (comprising of another three ponds) is control pond with commercial feed. Mean final weight, percent weight gain, final net yield, feed conversion ratio and survival were evaluated. Higher condition index values, survival rate and gain in prawn weight were observed in experimental pond compared to control pond. Low FCR values were observed in the experimental pond than the control pond. Evaluation of production parameters at the end of the study demonstrated significant differences (P ≥ 0.05) among two ponds. The variation may be attributed to specially formulated plant based feed that not only boosted up the growth of prawns, but also upgraded the ambient aquatic health. These results indicate that fish meal can be replaced with algal protein sources in diets without affecting prawn growth and production.

Keywords: macrobrachium rosenbergii, porteresia coarctata, Indian sundarbans, feed

Procedia PDF Downloads 358
5081 The Sub-Optimality of the Electricity Subsidy on Tube Wells in Balochistan (Pakistan): An Analysis Based on Socio-Cultural and Policy Distortions

Authors: Rameesha Javaid

Abstract:

Agriculture is the backbone of the economy of the province of Balochistan which is known as the ‘fruit basket’ of Pakistan. Its climate zones comprising highlands and plateaus, dependent on rain water, are more suited for the production of deciduous fruit. The vagaries of weather and more so the persistent droughts prompted the government to announce flat rates of electricity bills per month irrespective of the size of the farm, quantum or water used and the category of crop group. That has, no doubt, resulted in increased cropping intensity, more production and employment but has enormously burdened the official exchequer which picks up the residual bills in certain percentages amongst the federal and provincial governments and the local electricity company. This study tests the desirability of continuing the subsidy in the present mode. Optimization of social welfare of farmers has been the focus of the study with emphasis on the contribution of positive externalities and distortions caused in terms of negative externalities. By using the optimization technique with due allowance for distortions, it has been established that the subsidy calls for limiting policy distortions as they cause sub-optimal utilization of the tube well subsidy and improved policy programming. The sensitivity analysis with changed rankings of contributing variables towards social welfare does not significantly change the result. Therefore it leads to the net findings and policy recommendations of significantly reducing the subsidy size, correcting and curtailing policy distortions and targeting the subsidy grant more towards small farmers to generate more welfare by saving a sizeable amount from the subsidy for investment in the wellbeing of the farmers in rural Balochistan.

Keywords: distortion, policy distortion, socio-cultural distortion, social welfare, subsidy

Procedia PDF Downloads 293
5080 The Use of Microbiological Methods to Reduce Aflatoxin M1 in Cheese

Authors: Bruna Goncalves, Jennifer Henck, Romulo Uliana, Eliana Kamimura, Carlos Oliveira, Carlos Corassin

Abstract:

Studies have shown evidence of human exposure to aflatoxin M1 due to the consumption of contaminated milk and dairy products (mainly cheeses). This poses a great risk to public health, since milk and milk products are frequently consumed by a portion of the population considered immunosuppressed, children and the elderly. Knowledge of the negative impacts of aflatoxins on health and economics has led to investigations of strategies to prevent their formation in food, as well as to eliminate, inactivate or reduce the bioavailability of these toxins in contaminated products This study evaluated the effect of microbiological methods using lactic acid bacteria on aflatoxin M1 (AFM1) reduction in Minas Frescal cheese (typical Brazilian product, being among the most consumed cheeses in Brazil) spiked with 1 µg/L AFM1. Inactivated lactic acid bacteria (0,5%, v/v de L. rhamnosus e L. lactis) were added during the cheese production process. Nine cheeses were produced, divided into three treatments: negative controls (without AFM1 or lactic acid bacteria), positive controls (AFM1 only), and lactic acid bacteria + AFM1. Samples of cheese were collected on days 2, 10, 20 and 30 after the date of production and submitted to composition analyses and determination of AFM1 by high-performance liquid chromatography. The reductions of AFM1 in cheese by lactic acid bacteria at the end of the trial indicate a potential application of inactivated lactic acid bacteria in reducing the bioavailability of AFM1 in Minas frescal cheese without physical-chemical and microbiological modifications during the 30-day experimental period. The authors would like to thank São Paulo Research Foundation – FAPESP (grants #2017/20081-6 and #2017/19683-1).

Keywords: aflatoxin, milk, minas frescal cheese, decontamination

Procedia PDF Downloads 196
5079 Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050

Authors: Ali Hashemifarzad, Jens Zum Hingst

Abstract:

The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a.

Keywords: energy demand, energy transition, German Energiewende, 100% renewable energy production

Procedia PDF Downloads 135
5078 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach

Authors: Kathy Pain, Nalumino Akakandelwa

Abstract:

The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.

Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping

Procedia PDF Downloads 71
5077 A Study Problem and Needs Compare the Held of the Garment Industries in Nonthaburi and Bangkok Area

Authors: Thepnarintra Praphanphat

Abstract:

The purposes of this study were to investigate garment industry’s condition, problems, and need for assistance. The population of the study was 504 managers or managing directors of garment establishments finished apparel industrial manager and permission of the Department of Industrial Works 28, Ministry of Industry until January 1, 2012. In determining the sample size with the opening of the Taro Yamane finished at 95% confidence level is ± 5% deviation was 224 managers. Questionnaires were used to collect the data. Percentage, frequency, arithmetic mean, standard deviation, t-test, ANOVA, and LSD were used to analyze the data. It was found that most establishments were of a large size, operated in a form of limited company for more than 15 years most of which produced garments for working women. All investment was made by Thai people. The products were made to order and distributed domestically and internationally. The total sale of the year 2010, 2011, and 2012 was almost the same. With respect to the problems of operating the business, the study indicated, as a whole, by- aspects, and by-items, that they were at a high level. The comparison of the level of problems of operating garment business as classified by general condition showed that problems occurring in business of different sizes were, as a whole, not different. In taking aspects into consideration, it was found that the level of problem in relation to production was different; medium establishments had more problems in production than those of small and large sizes. According to the by-items analysis, five problems were found different; namely, problems concerning employees, machine maintenance, number of designers, and price competition. Such problems in the medium establishments were at a higher level than those in the small and large establishments. Regarding business age, the examination yielded no differences as a whole, by-aspects, and by-items. The statistical significance level of this study was set at .05.

Keywords: garment industry, garment, fashion, competitive enhancement project

Procedia PDF Downloads 189
5076 Biogenic Amines Production during RAS Cheese Ripening

Authors: Amr Amer

Abstract:

Cheeses are among those high-protein-containing foodstuffs in which enzymatic and microbial activities cause the formation of biogenic amines from amino acids decarboxylation. The amount of biogenic amines in cheese may act as a useful indicator of the hygienic quality of the product. In other words, their presence in cheese is related to its spoilage and safety. Formation of biogenic amines during Ras cheese (Egyptian hard cheese) ripening was investigated for 4 months. Three batches of Ras cheese were manufactured using Egyptian traditional method. From each batch, Samples were collected at 1, 7, 15, 30, 60, 90 and 120 days after cheese manufacture. The concentrations of biogenic amines (Tyramine, Histamine, Cadaverine and Tryptamine) were analyzed by high performance liquid chromatography (HPLC). There was a significant increased (P<0.05) in Tyramine levels from 4.34± 0.07 mg|100g in the first day of storage till reached 88.77± 0.14 mg|100g at a 120-day of storage. Also, Histamine and Cadaverine levels had the same increased pattern of Tyramine reaching 64.94± 0.10 and 28.28± 0.08 mg|100g in a 120- day of storage, respectively. While, there was a fluctuation in the concentration of Tryptamine level during ripening period as it decreased from 3.24± 0.06 to 2.66± 0.11 mg|100g at 60-day of storage then reached 5.38±0.08 mg|100g in a 120- day of storage. Biogenic amines can be formed in cheese during production and storage: many variables, as pH, salt concentration, bacterial activity as well as moisture, storage temperature and ripening time, play a relevant role in their formation. Comparing the obtained results with the recommended standard by Food and Drug Administration "FDA" (2001), High levels of biogenic amines in various Ras cheeses consumed in Egypt exceeded the permissible value (10 mg%) which seemed to pose a threat to public health. In this study, presence of high concentrations of biogenic amines (Tyramine, Histamine, cadaverine and Tryptamine) in Egyptian Ras cheeses reflects the bad hygienic conditions under which they produced and stored. Accordingly, the levels of biogenic amines in different cheeses should be come in accordance with the safe permissible limit recommended by FDA to ensure human safety.

Keywords: Ras cheese, biogenic amines, tyramine, histamine, cadaverine

Procedia PDF Downloads 437
5075 Sonodynamic Activity of Porphyrins-SWCNT

Authors: F. Bosca, F. Foglietta, F. Turci, E. Calcio Gaudino, S. Mana, F. Dosio, R. Canaparo, L. Serpe, A. Barge

Abstract:

In recent years, medical science has improved chemotherapy, radiation therapy and adjuvant therapy and has developed newer targeted therapies as well as refining surgical techniques for removing cancer. However, the chances of surviving the disease depend greatly on the type and location of the cancer and the extent of the disease at the start of treatment. Moreover, mainstream forms of cancer treatment have side effects which range from the unpleasant to the fatal. Therefore, the continuation of progress in anti-cancer therapy may depend on placing emphasis on other existing but less thoroughly investigated therapeutic approaches such as Sonodynamic Therapy (SDT). SDT is based on the local activation of a so called 'sonosensitizer', a molecule able to be excited by ultrasound, the radical production as a consequence of its relaxation processes and cell death due to different mechanisms induced by radical production. The present work deals with synthesis, characterization and preliminary in vitro test of Single Walled Carbon Nanotubes (SWCNT) decorated with porphyrins and biological vectors. The SWCNT’s surface was modified exploiting 1, 3-dipolar cycloaddition or Dies Alder reactions. For this purpose, different porphyrins scaffolds were ad-hoc synthesized using also non-conventional techniques. To increase cellular specificity of porphyrin-conjugated SWCNTs and to improve their ability to be suspended in aqueous solution, the modified nano-tubes were grafted with suitable glutamine or hyaluronic acid derivatives. These nano-sized sonosensitizers were characterized by several methodologies and tested in vitro on different cancer cell lines.

Keywords: sonodynamic therapy, porphyrins synthesis and modification, SWNCT grafting, hyaluronic acid, anti-cancer treatment

Procedia PDF Downloads 391
5074 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer

Authors: A. J. Cobley, L. Krishnan

Abstract:

The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.

Keywords: degassing, low frequency ultrasound, polymer composites, voids

Procedia PDF Downloads 296
5073 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry

Authors: Parashram Jakappa Patil

Abstract:

India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.

Keywords: cashew, processing technology, packaging, international trade, change

Procedia PDF Downloads 423
5072 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 278
5071 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 353
5070 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach

Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino

Abstract:

The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3  0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.

Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.

Procedia PDF Downloads 44