Search results for: learning of neuron
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7328

Search results for: learning of neuron

4658 The Pedagogical Force of Land and Art in Graduate Social Work A/R/Tographic Research

Authors: Valerie Triggs, Michele Sorensen

Abstract:

As two university professors in postsecondary faculties of social work and education, we have observed that students often recognize the importance of learning facts about colonization but have difficulty grappling with how they themselves might be implicated in reconciliation or how they might respond to these facts in meaningful ways. The detachment observed between students and factual information results in the initiation of a research study centered around an approach to teaching the course. This involved transitioning its pedagogical format to embrace a/r/tographic methods of teaching, learning, and inquiry. By taking seriously the arguments of various Indigenous scholars for learning from the land and by working alongside traditional Indigenous knowledge, we chose to engage a speculative approach to course design and teaching, which actually used the land as one of the course texts. We incorporated art practices that involved connecting bodies with land as well as using land materials in various creative and aesthetic projects while being informed by Medicine Keepers, Indigenous and settler artists, and knowledge-keeper helpers. In this study, we share some of the unanticipated themes that arose when students began to allow land and artmaking, both aesthetically and intuitively, through both joy and sorrow, to affect a reimagining and repositioning of selves and relations. We found that time and engagement with land and art began to build more empathic understanding and foster personal and professional practices grounded in respect, relevance, reciprocity, and responsibility.

Keywords: reconciliation, decolonization, artmaking, respect

Procedia PDF Downloads 53
4657 Differential Approach to Technology Aided English Language Teaching: A Case Study in a Multilingual Setting

Authors: Sweta Sinha

Abstract:

Rapid evolution of technology has changed language pedagogy as well as perspectives on language use, leading to strategic changes in discourse studies. We are now firmly embedded in a time when digital technologies have become an integral part of our daily lives. This has led to generalized approaches to English Language Teaching (ELT) which has raised two-pronged concerns in linguistically diverse settings: a) the diverse linguistic background of the learner might interfere/ intervene with the learning process and b) the differential level of already acquired knowledge of target language might make the classroom practices too easy or too difficult for the target group of learners. ELT needs a more systematic and differential pedagogical approach for greater efficiency and accuracy. The present research analyses the need of identifying learner groups based on different levels of target language proficiency based on a longitudinal study done on 150 undergraduate students. The learners were divided into five groups based on their performance on a twenty point scale in Listening Speaking Reading and Writing (LSRW). The groups were then subjected to varying durations of technology aided language learning sessions and their performance was recorded again on the same scale. Identifying groups and introducing differential teaching and learning strategies led to better results compared to generalized teaching strategies. Language teaching includes different aspects: the organizational, the technological, the sociological, the psychological, the pedagogical and the linguistic. And a facilitator must account for all these aspects in a carefully devised differential approach meeting the challenge of learner diversity. Apart from the justification of the formation of differential groups the paper attempts to devise framework to account for all these aspects in order to make ELT in multilingual setting much more effective.

Keywords: differential groups, English language teaching, language pedagogy, multilingualism, technology aided language learning

Procedia PDF Downloads 394
4656 Levels of Reflection in Engineers EFL Learners: The Path to Content and Language Integrated Learning Implementation in Chilean Higher Education

Authors: Sebastián Olivares Lizana, Marianna Oyanedel González

Abstract:

This study takes part of a major project based on implementing a CLIL program (Content and Language Integrated Learning) at Universidad Técnica Federico Santa María, a leading Chilean tertiary Institution. It aims at examining the relationship between the development of Reflective Processes (RP) and Cognitive Academic Language Proficiency (CALP) in weekly learning logs written by faculty members, participants of an initial professional development online course on English for Academic Purposes (EAP). Such course was designed with a genre-based approach, and consists of multiple tasks directed to academic writing proficiency. The results of this analysis will be described and classified in a scale of key indicators that represent both the Reflective Processes and the advances in CALP, and that also consider linguistic proficiency and task progression. Such indicators will evidence affordances and constrains of using a genre-based approach in an EFL Engineering CLIL program implementation at tertiary level in Chile, and will serve as the starting point to the design of a professional development course directed to teaching methodologies in a CLIL EFL environment in Engineering education at Universidad Técnica Federico Santa María.

Keywords: EFL, EAL, genre, CLIL, engineering

Procedia PDF Downloads 399
4655 Intensive Intercultural English Language Pedagogy among Parents from Culturally and Linguistically Diverse Backgrounds (CALD)

Authors: Ann Dashwood

Abstract:

Using Standard Australian English with confidence is a cultural expectation of parents of primary school aged children who want to engage effectively with their children’s teachers and school administration. That confidence in support of their children’s learning at school is seldom experienced by parents whose first language is not English. Sharing language with competence in an intercultural environment is the common denominator for meaningful communication and engagement to occur in a school community. Experience in relevant, interactive sessions is known to enhance engagement and participation. The purpose of this paper is to identify a pedagogy for parents otherwise isolated from daily use of functional Australian cultural language learned to engage effectively in their children’s learning at school. The outcomes measure parents’ intercultural engagement with classroom teachers and attention to the school’s administrative procedures using quantitative and qualitative methods. A principled communicative task-based language learning approach, combined with intercultural communication strategies provide the theoretical base for intensive English inquiry-based learning and engagement. The quantitative analysis examines data samples collected by classroom teachers and administrators and parents’ writing samples. Interviews and observations qualitatively inform the study. Currently, significant numbers of projects are active in community centers and schools to enhance English language knowledge of parents from Language Backgrounds Other Than English (LBOTE). The study is significant to explore the effects of an intensive English pedagogy with parents of varied English language backgrounds, by targeting inquiry-based language use for social interactions in the school and wider community, specific engagement and cultural interaction with teachers and school activities and procedures.

Keywords: engagement, intercultural communication, language teaching pedagogy, LBOTE, school community

Procedia PDF Downloads 124
4654 Application of Digital Tools for Improving Learning

Authors: José L. Jiménez

Abstract:

The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.

Keywords: digital tools, on-line learning, social networks, technology

Procedia PDF Downloads 407
4653 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove

Procedia PDF Downloads 306
4652 Student Perceptions on Administrative Support in the Delivering of Open Distance Learning Programmes – A Case Study

Authors: E. J. Spamer, J. M. Van Zyl, MHA Combrinck

Abstract:

The Unit for Open Distance Learning (UODL) at the North-West University (NWU), South Africa was established in 2013 with its main function to deliver open distance learning (ODL) programmes to approximately 30 000 students from the Faculties of Education Sciences, Health Sciences, Theology and Arts and Culture. Quality operational and administrative processes are key components in the delivery of these programmes and they need to function optimally for students to be successful in their studies. Operational and administrative processes include aspects such as applications, registration, dissemination of study material, availability of electronic platforms, the management of assessment, and the dissemination of important information. To be able to ensure and enhance quality during these processes, it is vital to determine students’ perceptions with regards to these mentioned processes. A questionnaire was available online and also distributed to the 63 tuition centres. The purpose of this research was to determine the perceptions of ODL students from NWU regarding operational and administrative processes. 1903 students completed and submitted the questionnaire. The data was quantitatively analysed and discussed. Results indicated that the majority of students are satisfied with the operational and administrative processes; however, the results also indicated some areas that need improvement. The data gathered is important to identify strengths and areas for improvement and form part of a bigger strategy of qualitative assurance at the UODL.

Keywords: administrative support, ODL programmes, quantitative study, students' perceptions

Procedia PDF Downloads 276
4651 The Impact of Neonatal Methamphetamine on Spatial Learning and Memory of Females in Adulthood

Authors: Ivana Hrebickova, Maria Sevcikova, Romana Slamberova

Abstract:

The present study was aimed at evaluation of cognitive changes following scheduled neonatal methamphetamine exposure in combination with long-term exposure in adulthood of female Wistar rats. Pregnant mothers were divided into two groups: group with indirect exposure (methamphetamine in dose 5 mg/ml/kg, saline in dose 1 ml/kg) during early lactation period (postnatal day 1–11) - progeny of these mothers were exposed to the effects of methamphetamine or saline indirectly via the breast milk; and the second group with direct exposure – all mothers were left intact for the entire lactation period, while progeny was treated with methamphetamine (5 mg/ml/kg) by injection or the control group, which was received needle pick (shame, not saline) at the same time each day of period of application (postnatal day 1–11). Learning ability and memory consolidation were tested in the Morris Water Maze, which consisted of three types of tests: ‘Place Navigation Test ‘; ‘Probe Test ‘; and ‘Memory Recall Test ‘. Adult female progeny were injected daily, after completion last trial with saline or methamphetamine (1 mg/ml/kg). We compared the effects of indirect/direct neonatal methamphetamine exposure and adult methamphetamine treatment on cognitive function of female rats. Statistical analyses showed that neonatal methamphetamine exposure worsened spatial learning and ability to remember the position of the platform. The present study demonstrated that direct methamphetamine exposure has more significant impact on process of learning and memory than indirect exposure. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirm all these results.

Keywords: methamphetamine, Morris water maze, neonatal exposure, strategies, Wistar rats

Procedia PDF Downloads 269
4650 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 153
4649 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung

Authors: Yi-Ju Lee

Abstract:

This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.

Keywords: creative tourism, sense of achievement, unique learning, interaction with instructors, folk art

Procedia PDF Downloads 281
4648 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania

Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga

Abstract:

Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.

Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment

Procedia PDF Downloads 287
4647 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 191
4646 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure

Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani

Abstract:

Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.

Keywords: cognitive impairment, heavy metal exposure, predictive models, aging

Procedia PDF Downloads 8
4645 Students' Experience Perception in Courses Taught in New Delivery Modes Compared to Traditional Modes

Authors: Alejandra Yanez, Teresa Benavides, Zita Lopez

Abstract:

Even before COVID-19, one of the most important challenges that Higher Education faces today is the need for innovative educational methodologies and flexibility. We could all agree that one of the objectives of Higher Education is to provide students with a variety of intellectual and practical skills that, at the same time, will help them develop competitive advantages such as adaptation and critical thinking. Among the strategic objectives of Universidad de Monterrey (UDEM) has been to provide flexibility and satisfaction to students in the delivery modes of the academic offer. UDEM implemented a methodology that combines face to face with synchronous and asynchronous as delivery modes. UDEM goal, in this case, was to implement new technologies and different teaching methodologies that will improve the students learning experience. In this study, the experience of students during courses implemented in new delivery mode was compared with students in courses with traditional delivery modes. Students chose openly either way freely. After everything students around the world lived in 2020 and 2021, one can think that the face to face (traditional) delivery mode would be the one chosen by students. The results obtained in this study reveal that both delivery modes satisfy students and favor their learning process. We will show how the combination of delivery modes provides flexibility, so the proposal is that universities can include them in their academic offer as a response to the current student's learning interests and needs.

Keywords: flexibility, new delivery modes, student satisfaction, academic offer

Procedia PDF Downloads 107
4644 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 139
4643 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 387
4642 A Sense of Belonging: Music Learning and School Connectedness

Authors: Johanna Gamboa-Kroesen

Abstract:

School connectedness, or the sense of belonging at school, is a critical factor in adolescent health, academic achievement, and socioemotional well-being. In educational research, the construct of the psychological sense of school membership is often referred to as school engagement, school bonding, or school attachment. While current research recognizes school connectedness as integral to a child’s mental health and academic success, many schools have yet to develop adequate interventions to promote a child’s overall sense of belonging at school. However, prior researches in music education indicates that, among other benefits, music classrooms may provide an environment where students feel they belong. While studies indicates that music learning environments, specifically performing ensemble learning environments, instill a sense of school connectedness and, more broadly, contribute to a student’s socio-emotional development, there has been inadequate research on how the actions of music teachers contribute to this phenomenon. The purpose of this study was to examine the relationship between school connectedness and music learning environments with middle school music students enrolled in a school-based music ensemble. In addition, the study aimed to provide a descriptive analysis of the instructional practices that music teachers use to promote an inclusive environment in their classrooms and an overall sense of belonging in their students. Using 191 student surveys of school membership, student reflective writings, 5 teacher interviews, and 10 classroom observations, this study examined the relationship between 7th and 8th-grade student-reported levels of connectedness within their school-based music ensemble and teacher instructional practice. The study found that students reported high levels of positive school membership within their music classes. Students who participate in school-based orchestra ensembles reported a positive change in emotional state during music instruction. In addition, evidence in this study found that music teachers use instructional practices to build connectedness through de-emphasizing competition and strengthening a student’s sense of relational value within their music learning experience. The findings offer implications for future music teacher instruction to create environments of inclusion, strengthen student-teacher relationships, and promote strategies that enhance student connection to school.

Keywords: music education, belonging, instructional practice, school connectedness

Procedia PDF Downloads 74
4641 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 63
4640 Distributed Cyber Physical Secure Framework for DC Microgrids: DC Ship Power System Applications

Authors: Grace karimi Muriithi, Behnaz Papari, Ali Arsalan, Christopher Shannon Edrington

Abstract:

Complexity and nonlinearity of the control system design is increasing for DC microgrid applications when the cyber concept associated with the technology constraints will added to the picture. Controllers’ functionality during the critical operation mode is required to guaranteed specifically for a high profile applications such as NAVY DC ship power system (SPS) as an small-scaled DC microgrid. Thus, SPS is susceptible to cyber-attacks and, accordingly, can provide the disastrous effects. In this study, a machine learning (ML) approach is demonstrated to offer the promising performance of SPS for developing an effective and robust functionality over attacks time. Simulation results analysis demonstrate that the proposed method can improve the controllability successfully.

Keywords: controlability, cyber attacks, distribute control, machine learning

Procedia PDF Downloads 118
4639 The Τraits Τhat Facilitate Successful Student Performance in Distance Education: The Case of the Distance Education Unit at European University Cyprus

Authors: Dimitrios Vlachopoulos, George Tsokkas

Abstract:

Although it is not intended to identify distance education students as a homogeneous group, recent research has demonstrated that there are some demographic and personality common traits among most of them that provide the basis for the description of a typical distance learning student. The purpose of this paper is to describe these common traits and to facilitate their learning journey within a distance education program. The described research is an initiative of the Distance Education Unit at the European University Cyprus (Laureate International Universities) in the context of its action for the improvement of the students’ performance.

Keywords: distance education students, successful student performance, European University Cyprus, common traits

Procedia PDF Downloads 487
4638 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns

Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz

Abstract:

This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.

Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns

Procedia PDF Downloads 62
4637 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 48
4636 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning

Procedia PDF Downloads 373
4635 Supporting the ESL Student in a Tertiary Setting: Carrot and Stick

Authors: Ralph Barnes

Abstract:

The internationalization and globalization of education are now a huge, multi-million dollar industry. The movement of international students across the globe has provided a rich vein of revenue for universities and institutions of higher learning to exploit and harvest. A concerted effort has been made by universities worldwide to court students from overseas, with some countries relying up to one-third of student fees, coming from international students. Australian universities and English Language Centres are coming under increased government scrutiny in respect to such areas as the academic progression of international students, management and understanding of student visa requirements and the design of higher education courses and effective assessment regimes. As such, universities and other higher education institutions are restructuring themselves more as service providers rather than as strictly education providers. In this paper, the high-touch, tailored academic model currently followed by some Australian educational institutions to support international students, is examined and challenged. Academic support services offered to international students need to be coordinated, sustained and reviewed regularly, in order to assess their effectiveness. Maintaining the delivery of high-quality educational programs and learning outcomes for this high income-generating student cohort is vital, in order to continue the successful academic and social engagement by international students across the Australian university and higher education landscape.

Keywords: ESL, engagement, tertiary, learning

Procedia PDF Downloads 206
4634 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities

Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia

Abstract:

There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.

Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy

Procedia PDF Downloads 170
4633 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management

Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra

Abstract:

This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.

Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning

Procedia PDF Downloads 401
4632 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis

Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk

Abstract:

The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.

Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing

Procedia PDF Downloads 161
4631 Playing with Gender Identity through Learning English as a Foreign Language in Algeria: A Gender-Based Analysis of Linguistic Practices

Authors: Amina Babou

Abstract:

Gender and language is a moot and miscellaneous arena in the sphere of socio-linguistics, which has been proliferated so widely and rapidly in recent years. The dawn of research on gender and foreign language education was against the feminist researchers who allowed space for the bustling concourse of voices and perspectives in the arena of gender and language differences, in the early to the mid-1970. The objective of this scrutiny is to explore to what extent teaching gender and language in the English as a Foreign Language (EFL) classroom plays a pivotal role in learning language information and skills. Moreover, the gist of this paper is to investigate how EFL students in Algeria conflate their gender identities with the linguistic practices and scholastic expertise. To grapple with the full range of issues about the EFL students’ awareness about the negotiation of meanings in the classroom, we opt for observing, interviewing, and questioning later to check using ‘how-do-you do’ procedure. The analysis of the EFL classroom discourse, from five Algerian universities, reveals that speaking strategies such as the manners students make an abrupt topic shifts, respond spontaneously to the teacher, ask more questions, interrupt others to seize control of conversations and monopolize the speaking floor through denying what others have said, do not sit very lightly on 80.4% of female students’ shoulders. The data indicate that female students display the assertive style as a strategy of learning to subvert the norms of femininity, especially in the speaking module.

Keywords: EFL students, gender identity, linguistic styles, foreign language

Procedia PDF Downloads 465
4630 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: engineering education, integrated curriculum, learning experience, learning outcomes

Procedia PDF Downloads 246
4629 Importance of Collegiality to Improve the Effectiveness of a Poorly Resourced School

Authors: Prakash Singh

Abstract:

This study focused on the importance of collegiality to improve the effectiveness of a poorly resourced school (PRS). In an effective school that embraces collegiality as its culture, one can expect to find a teaching staff and a management team that shares responsibilities and accountabilities through the development of a common purpose and vision, regardless of whether the school is considered to be poorly resourced or not. Working together in collegial teams is a more effective way to accomplish tasks and to create a climate for effective learning, even for learners in PRSs from poor communities. The main aim of this study was therefore to determine whether collegiality as a leadership strategy could extract the best from people in a PRS, and consequently create the most effective and efficient educational climate possible. The responses received from the teachers and the principal at the PRS supports the notion that collegiality does have a positive influence on learning, as demonstrated by the improved academic achievement of the learners. The teachers were now more involved in the school. They agreed that this was a positive development. Their descriptions of increased involvement, shared accountability and shared decision-making identified important aspects of collegiality that transformed the school from being dysfunctional. Hence, it is abundantly clear that a collegial leadership style can help extract the best from people because the most effective and efficient educational climate can be created at a school when collegiality is employed. Collegial leadership demonstrates that even in PRSs, there are boundless opportunities to improve teaching and learning.

Keywords: collegiality, collegial leadership, effective educational climate, poorly resourced school

Procedia PDF Downloads 405