Search results for: intercultural competence training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4558

Search results for: intercultural competence training

1888 Threshold Concepts in TESOL: A Thematic Analysis of Disciplinary Guiding Principles

Authors: Neil Morgan

Abstract:

The notion of Threshold Concepts has offered a fertile new perspective on the transformative effects of mastery of particular concepts on student understanding of subject matter and their developing identities as inductees into disciplinary discourse communities. Only by successfully traversing key knowledge thresholds, it is claimed, can neophytes gain access to the more sophisticated understandings of subject matter possessed by mature members of a discipline. This paper uses thematic analysis of disciplinary guiding principles to identify nine candidate Threshold Concepts that appear to underpin effective TESOL practice. The relationship between these candidate TESOL Threshold Concepts, TESOL principles, and TESOL instructional techniques appears to be amenable to a schematic representation based on superordinate categories of TESOL practitioner concern and, as such, offers an alternative to the view of Threshold Concepts as a privileged subset of disciplinary core concepts. The paper concludes by exploring the potential of a Threshold Concepts framework to productively inform TESOL initial teacher education (ITE) and in-service education and training (INSET).

Keywords: TESOL, threshold concepts, TESOL principles, TESOL ITE/INSET, community of practice

Procedia PDF Downloads 141
1887 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 154
1886 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 119
1885 Ethical Perspectives on Implementation of Computer Aided Design Curriculum in Architecture in Nigeria: A Case Study of Chukwuemeka Odumegwu Ojukwu University, Uli

Authors: Kelechi Ezeji

Abstract:

The use of Computer Aided Design (CAD) technologies has become pervasive in the Architecture, Engineering and Construction (AEC) industry. This has led to its inclusion as an important part of the training module in the curriculum for Architecture Schools in Nigeria. This paper examines the ethical questions that arise in the implementation of Computer Aided Design (CAD) Content of the curriculum for Architectural education. Using existing literature, it begins this scrutiny from the propriety of inclusion of CAD into the education of the architect and the obligations of the different stakeholders in the implementation process. It also examines the questions raised by the negative use of computing technologies as well as perceived negative influence of the use of CAD on design creativity. Survey methodology was employed to gather data from the Department of Architecture, Chukwuemeka Odumegwu Ojukwu University Uli, which has been used as a case study on how the issues raised are being addressed. The paper draws conclusions on what will make for successful ethical implementation.

Keywords: computer aided design, curriculum, education, ethics

Procedia PDF Downloads 413
1884 Predicting Machine-Down of Woodworking Industrial Machines

Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta

Abstract:

In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.

Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence

Procedia PDF Downloads 227
1883 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking

Authors: Jinsiang Shaw, Pik-Hoe Chen

Abstract:

This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.

Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting

Procedia PDF Downloads 333
1882 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 178
1881 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 94
1880 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University

Authors: Siriporn Poolsuwan, Kanyarat Bussaban

Abstract:

This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization.

Keywords: online database, user behavior, news clipping, library services

Procedia PDF Downloads 314
1879 Exploration of the Psychological Aspect of Empowerment of Marginalized Women Working in the Unorganized Sector

Authors: Sharmistha Chanda, Anindita Choudhuri

Abstract:

This exploratory study highlights the psychological aspects of women's empowerment to find the importance of the psychological dimension of empowerment, such as; meaning, competence, self-determination, impact, and assumption, especially in the weaker marginalized section of women. A large proportion of rural, suburban, and urban poor survive by working in unorganized sectors of metropolitan cities. Relative Poverty and lack of employment in rural areas and small towns drive many people to the metropolitan city for work and livelihood. Women working in that field remain unrecognized as people of low socio-economic status. They are usually willing to do domestic work as daily wage workers, single wage earners, street vendors, family businesses like agricultural activities, domestic workers, and self-employed. Usually, these women accept such jobs because they do not have such an opportunity as they lack the basic level of education that is required for better-paid jobs. The unorganized sector, on the other hand, has no such clear-cut employer-employee relationships and lacks most forms of social protection. Having no fixed employer, these workers are casual, contractual, migrant, home-based, own-account workers who attempt to earn a living from whatever meager assets and skills they possess. Women have become more empowered both financially and individually through small-scale business ownership or entrepreneurship development and in household-based work. In-depth interviews have been done with 10 participants in order to understand their living styles, habits, self-identity, and empowerment in their society in order to evaluate the key challenges that they may face following by qualitative research approach. Transcription has been done from the collected data. The three-layer coding technique guides the data analysis process, encompassing – open coding, axial coding, and selective coding. Women’s Entrepreneurship is one of the foremost concerns as the Government, and non-government institutions are readily serving this domain with the primary objectives of promoting self-employment opportunities in general and empowering women in specific. Thus, despite hardship and unrecognition unorganized sector provides a huge array of opportunities for rural and sub-urban poor to earn. Also, the upper section of society tends to depend on this working force. This study gave an idea about the well-being, and meaning in life, life satisfaction on the basis of their lived experience.

Keywords: marginalized women, psychological empowerment, relative poverty, unorganized sector

Procedia PDF Downloads 62
1878 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments

Authors: Hediye Saglam

Abstract:

This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.

Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments

Procedia PDF Downloads 505
1877 Safety Management and Occupational Injuries Assessing the Mediating Role of Safety Compliance: Downstream Oil and Gas Industry of Malaysia

Authors: Muhammad Ajmal, Ahmad Shahrul Nizam Bin Isha, Shahrina Md. Nordin, Paras Behrani, Al-Baraa Abdulrahman Al-Mekhlafi

Abstract:

This study aims to investigate the impact of safety management practices via safety compliance on occupational injuries in the context of downstream the oil and gas industry of Malaysia. However, it is still challenging for researchers and academicians to control occupational injuries in high-safety-sensitive organizations. In this study response rate was 62%, and 280 valid responses were used for analysis through SmartPLS. The study results revealed that safety management practices (management commitment, safety training, safety promotion policies, workers’ involvement) play a significant role in lowering the rate of accidents in downstream the oil and gas industry via safety compliance. Furthermore, the study results also revealed that safety management practices also reduce safety management costs of organizations, e.g., lost work days and employee absenteeism. Moreover, this study is helpful for safety leaders and managers to understand the importance of safety management practices to lower the ratio of occupational injuries.

Keywords: safety management, safety compliance, occupational injuries, oil and gas, Malaysia

Procedia PDF Downloads 155
1876 The Factors Affecting the Development of the Media and Animations for Vocational School in Thailand

Authors: Tanit Pruktara

Abstract:

The research aimed to study the students’ learning achievement and awareness level on electrical energy consumption and conservation and also to investigate the students’ attitude on the developed multimedia supplemented instructional unit for learning household electrical energy consumption and conservation in grade 10 Thailand student. This study used a quantitative method using MCQ for pre and post-achievement tests and Likert scales for awareness and attitude survey questionnaires. The results from this were employed to improve the multimedia to be appropriate for the classroom and with real life situations in the second phase, the main study. The experimental results showed that the developed learning unit significantly improved the students’ learning achievement as well as their awareness of electric energy conservation. Additional we found the student will enjoy participating in class activities when the lessons are taught using multimedia and helps them to develop the relevance between the course and real world situations.

Keywords: lesson plan, media and animations, training course, vocational school in Thailand

Procedia PDF Downloads 177
1875 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
1874 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 182
1873 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 128
1872 Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation.

Keywords: thermodynamic equilibrium constant, reaction rate constant, PBL teaching, dialectical relation, innovative thinking

Procedia PDF Downloads 110
1871 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 146
1870 Accessing Motional Quotient for All Round Development

Authors: Zongping Wang, Chengjun Cui, Jiacun Wang

Abstract:

The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.

Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development

Procedia PDF Downloads 163
1869 Attitude and Perception of Non-emergency Vehicle Drivers on Roads Towards Medical Emergency Vehicles: The Role of Empathy and Pro-Social Skills

Authors: Purnima K Bajre, Rujula Talloo

Abstract:

A variety of vehicles are driven on roads such as private vehicles, commercial vehicles, public vehicles, and emergency service vehicles (EMV). Drivers driving different vehicles can have attitude differences towards emergency service vehicles which in turn affects their likelihood to give way to them. The present review aims to understand the factors that mediate this yielding behavior of drivers towards EMVs. Through extensive review of available literature, factors such as effects of lights and sirens, cognitive load, age of the driver, driving general experience, traffic load, drivers’ experience and training with EMVs and drivers’ attitude towards EMV drivers, have emerged as mediating factors. Whereas cognitive load is the most researched area and is observed to be associated negatively with on road drivers’ attitudes towards EMVs, there is a paucity of research to understand the relationships between empathy, pro-social skills, and on road drivers’ attitude towards EMVs.

Keywords: cognitive load, emergency service vehicle, empathy, traffic load

Procedia PDF Downloads 31
1868 The Knowledge and Beliefs Concerning Attention Deficit Hyperactivity Disorder Held by Parents of Children With Attention Deficit Hyperactivity Disorder in Saudi Arabia

Authors: Mohaned G. Abed

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is considered one of the most frequently diagnosed psychiatric childhood disorders. It has an effect on 3–5% of school-aged children, and brings about difficulties in academic and social interaction. This study explored the knowledge and beliefs of parents in Saudi Arabia about children with ADHD. The Knowledge about Attention Deficit Disorder Questionnaire (KADD-Q) was administered to a sample of parents, followed by interviews with a subset of the total respondents. The results indicated that the parents knew more about the characteristics of ADHD than they knew about its related causes and treatment. Overall, the findings indicated that these parents had some knowledge about general characteristics of ADHD, but they had little understanding of causes and possible interventions. These results suggest an important need for more formal parents training regarding all aspects of ADHD in school age children.

Keywords: attention deficit hyperactivity disorder, childhood disorders, school-aged children, difficulties in academic, social interaction

Procedia PDF Downloads 113
1867 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 21
1866 Fostering Students’ Cultural Intelligence: A Social Media Experiential Project

Authors: Lorena Blasco-Arcas, Francesca Pucciarelli

Abstract:

Business contexts have become globalised and digitalised, which requires that managers develop a strong sense of cross-cultural intelligence while working in geographically distant teams by means of digital technologies. How to better equip future managers on these kinds of skills has been put forward as a critical issue in Business Schools. In pursuing these goals, higher education is shifting from a passive lecture approach, to more active and experiential learning approaches that are more suitable to learn skills. For example, through the use of case studies, proposing plausible business problem to be solved by students (or teams of students), these institutions have focused for long in fostering learning by doing. Though, case studies are no longer enough as a tool to promote active teamwork and experiential learning. Moreover, digital advancements applied to educational settings have enabled augmented classrooms, expanding the learning experience beyond the class, which increase students’ engagement and experiential learning. Different authors have highlighted the benefits of digital engagement in order to achieve a deeper and longer-lasting learning and comprehension of core marketing concepts. Clickers, computer-based simulations and business games have become fairly popular between instructors, but still are limited by the fact that are fictional experiences. Further exploration of real digital platforms to implement real, live projects in the classroom seem relevant for marketing and business education. Building on this, this paper describes the development of an experiential learning activity in class, in which students developed a communication campaign in teams using the BuzzFeed platform, and subsequently implementing the campaign by using other social media platforms (e.g. Facebook, Instagram, Twitter…). The article details the procedure of using the project for a marketing module in a Bachelor program with students located in France, Italy and Spain campuses working on multi-campus groups. Further, this paper describes the project outcomes in terms of students’ engagement and analytics (i.e. visits achieved). the project included a survey in order to analyze and identify main aspects related to how the learning experience is influenced by the cultural competence developed through working in geographically distant and culturally diverse teamwork. Finally, some recommendations to use project-based social media tools while working with virtual teamwork in the classroom are provided.

Keywords: cultural competences, experiential learning, social media, teamwork, virtual group work

Procedia PDF Downloads 179
1865 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach

Authors: Hamed Rahmani, Wim Groot

Abstract:

The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Centre of Iran and the Ministry of Cooperatives Labour and Social Welfare that was taken from the labour force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of six in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education and years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.

Keywords: NEET youth, probit, CART, machine learning, unemployment

Procedia PDF Downloads 108
1864 The Legal Nature of Grading Decisions and the Implications for Handling of Academic Complaints in or out of Court: A Comparative Legal Analysis of Academic Litigation in Europe

Authors: Kurt Willems

Abstract:

This research examines complaints against grading in higher education institutions in four different European regions: England and Wales, Flanders, the Netherlands, and France. The aim of the research is to examine the correlation between the applicable type of complaint handling on the one hand, and selected qualities of the higher education landscape and of public law on the other hand. All selected regions report a rising number of complaints against grading decisions, not only as to internal complaint handling within the institution but also judicially if the dispute persists. Some regions deem their administrative court system appropriate to deal with grading disputes (France) or have even erected a specialty administrative court to facilitate access (Flanders, the Netherlands). However, at the same time, different types of (governmental) dispute resolution bodies have been established outside of the judicial court system (England and Wales, and to lesser extent France and the Netherlands). Those dispute procedures do not seem coincidental. Public law issues such as the underlying legal nature of the education institution and, eventually, the grading decision itself, have an impact on the way the academic complaint procedures are developed. Indeed, in most of the selected regions, contractual disputes enjoy different legal protection than administrative decisions, making the legal qualification of the relationship between student and higher education institution highly relevant. At the same time, the scope of competence of government over different types of higher education institutions; albeit direct or indirect (o.a. through financing and quality control) is relevant as well to comprehend why certain dispute handling procedures have been established for students. To answer the above questions, the doctrinal and comparative legal method is used. The normative framework is distilled from the relevant national legislative rules and their preparatory texts, the legal literature, the (published) case law of academic complaints and the available governmental reports. The research is mainly theoretical in nature, examining different topics of public law (mainly administrative law) and procedural law in the context of grading decisions. The internal appeal procedure within the education institution is largely left out of the scope of the research, as well as different types of non-governmental-imposed cooperation between education institutions, given the public law angle of the research questions. The research results in the categorization of different academic complaint systems, and an analysis of the possibility to introduce each of those systems in different countries, depending on their public law system and higher education system. By doing so, the research also adds to the debate on the public-private divide in higher education systems, and its effect on academic complaints handling.

Keywords: higher education, legal qualification of education institution, legal qualification of grading decisions, legal protection of students, academic litigation

Procedia PDF Downloads 232
1863 African American Female Caregivers’ Perceptions, Experiences, and Expectations of the Special Education Process

Authors: Lenell D. Walton

Abstract:

African American families have consistently contended that their child’s special education team does not provide the services necessary to meet their child’s academic goals. Special education teams must guide and mentor African American students and their families through the special education process. This qualitative study examined African American female caregivers' perceptions, experiences, and expectations regarding the special education process. Data collection methods utilized in the study included a survey, semi-structured interviews, and three focus groups. Data were analyzed and compared to identify themes. Three themes emerged from the survey: education and training, participation, and challenges. Six major themes emerged: (a) differences in treatment and cultural disconnect, (b) lack of support and resources, (c) participants’ experiences of the special education process, (d) parent participation, (e) barriers and concerns, and (f) expectations. Implications for policy and practice to improve the special education process are discussed.

Keywords: African American, caregivers, critical race theory, special education

Procedia PDF Downloads 105
1862 Challenges Faced by the Parents of Mentally Challenged Children in India

Authors: Chamaraja Parulli

Abstract:

Family is an important social institution devoted to the growth of a child, and parents are the important agents of socialization. Mentally challenged children are those who are affected by intellectual disability, which is manifested by limitation in intellectual functioning and adoptive behavior. Intellectual disability affects about 3-4 percentage of the general population. Intellectual disability is caused by genetic condition, problems during pregnancy, problems during childbirth, or illness. Mental retardation is the world’s most complex and challenging issue. The stigmatization of disability results in social and economic marginalization. Parents of the mentally challenged children will have a very high level of parenting stress, which is significantly more than the stress perceived by the parents of the children without disability. The prevalence of severe mental disorder called Schizophrenia is among 1.1 percent of the total population in India. On the other hand, 11 to 12 percent is the overall lifetime occurrence rate of mental disorders. While the government has a separate program for mental health, the segment is marred by lack of adequate doctors and infrastructure. Mentally retarded children have certain limitations in mental functioning and skills, which makes them slow learners in speaking, walking, and taking care of their personal needs such as dressing and eating. Accepting a child with mental handicap becomes difficult for parents and to the whole family, as they have to face many problems, including those of management, finance, deprivation of rest, and leisure. Also, the problems faced by the parents can be seen in different areas like – educational, psychological, social, emotional, financial and family related issues. The study brought out various difficulties and problems faced by the parents as well as family members. The findings revealed that the mental retardation is not only a medico-psychological problem but also a socio-cultural problem. The study results, however, indicate that the quality of life of the family having children with mental retardation can be improved to a greater extent by building up a child-friendly ambience at home. The main aim of the present study is to assess the problems faced by the parents of mentally challenged children, with the help of personal interview data collected from the parents of mentally challenged children, residing in Shimoga District of Karnataka State, India. These individuals were selected using stratified random sampling method. Organizing effective intervention programs for parents, family, society, and educational institutions towards reduction of family stress, augmenting the family’s strengths, increasing child’s competence and enhancing the positive attitudes and values of the society will go a long way for the peaceful existence of the mentally challenged children.

Keywords: mentally challenged children, intellectual disability, special children, social infrastructure, differently abled, psychological stress, marginalization

Procedia PDF Downloads 109
1861 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 365
1860 Implementation of European Court of Human Right Judgments and State Sovereignty

Authors: Valentina Tereshkova

Abstract:

The paper shows how the relationship between international law and national sovereignty is viewed through the implementation of European Court of Human Right judgments. Methodology: Сonclusions are based on a survey of representatives of the legislative authorities and judges of the Krasnoyarsk region, the Rostov region, Sverdlovsk region and Tver region. The paper assesses the activities of the Russian Constitutional Court from 1998 to 2015 related to the establishment of the implementation mechanism and the Russian Constitutional Court judgments of 14.07.2015, № 21-P and of 19.04.2016, № 12-P where the Constitutional Court stated the impossibility of executing ECtHR judgments. I. Implementation of ECHR judgments by courts and other authorities. Despite the publication of the report of the RF Ministry of Justice on the implementation, we could not find any formal information on the Russian policy of the ECtHR judgment implementation. Using the results of the survey, the paper shows the effect of ECtHR judgments on law and legal practice in Russia. II. Implementation of ECHR judgments by Russian Constitutional Court. Russian Constitutional Court had implemented the ECtHR judgments. However, the Court determined on July, 14, 2015 its competence to consider the question of implementation of ECHR judgments. Then, it stated that the execution of the judgment [Anchugov and Gladkov case] was impossible because the Russian Constitution has the highest legal force on April, 19, 2016. Recently the CE Committee of Ministers asked Russia to provide ‘without further delay’ a compensation plan for the Yukos case. On November 11, 2016, Constitutional Court accepted a request from the Ministry of Justice to consider the possibility of execution of the ECtHR judgment in the Yukos case. Such a request has been made possible due to a lack of implementation mechanism. Conclusion: ECtHR judgments are as an effective tool to solve the structural problems of a legal system. However, Russian experts consider the ECHR as a tool of protection of individual rights. The paper shows link between the survey results and the absence of the implementation mechanism. New Article 104 par. 2 and Article 106 par. 2 of the Federal Law of the Constitutional Court are in conflict with international obligations of the Convention on the Law on Treaties 1969 and Article 46 ECHR. Nevertheless, a dialogue may be possible between Constitutional Court and the ECtHR. In its judgment [19.04.2016] the Constitutional Court determined that the general measures to ensure fairness, proportionality and differentiation of the restrictions of voting rights were possible in judicial practice. It also stated the federal legislator had the power ‘to optimize the system of Russian criminal penalties’. Despite the fact that the Constitutional Court presented the Görgülü case [Görgülü v Germany] as an example of non-execution of the ECtHR judgment, the paper proposes to draw on the experience of German Constitutional Court, which in the Görgülü case, on the one hand, stressed national sovereignty and, on the other hand, took advantage of this sovereignty, to resolve the issue in accordance with the ECHR.

Keywords: implementation of ECtHR judgments, sovereignty, supranational jurisdictions, principle of subsidiarity

Procedia PDF Downloads 194
1859 Academia as Creator of Emerging, Innovative Communities of Practice and Learning

Authors: Francisco Julio Batle Lorente

Abstract:

The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.

Keywords: social innovation, new roles of academia, community of learning, community of practice

Procedia PDF Downloads 83