Search results for: gender specific data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31744

Search results for: gender specific data

29074 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context

Authors: Rit M., Girard R., Villot J., Thorel M.

Abstract:

In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.

Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology

Procedia PDF Downloads 69
29073 Response of Full-Scale Room Building Against Blast Loading

Authors: Eid Badshah, Amjad Naseer, Muhammad Ashraf

Abstract:

In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario.

Keywords: peak pressure, composition-B, TNT, pressure sensor, scaled distance, masonry

Procedia PDF Downloads 129
29072 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption

Procedia PDF Downloads 139
29071 Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski

Abstract:

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

Keywords: cluster analysis, education, mathematics, profiles

Procedia PDF Downloads 129
29070 The Influence of E-Health Education on Professional Practice: A Qualitative Study

Authors: Sisira Edirippulige, Anthony C. Smith, Sumudu Wickramasinghe, Nigel R. Armfield

Abstract:

Background: E-Health is steadily integrating into modern health services, making significant changes in the way health services are traditionally delivered. To work in this new environment, healthcare workers are required to have new knowledge, skills, and competencies specific to e-Health. The aim of this study was to understand the self-reported perceptions of graduates regarding the influence of an e-Health postgraduate program on their professional careers. Methods: All graduates from 2005 to 2015 were surveyed using an online questionnaire that consisted of a mixture of closed and open-ended questions. Results: The number of participants in the study was 32. Response rate was 62%. Graduates thought that the postgraduate e-Health program had an influence on their professional practice. The majority of the participants mentioned that they had worked in the e-Health field since their graduation. Their professional roles mainly involved implementation of e-Health in health service settings and the use of e-Health in clinical practice. Conclusions: While e-Health may be steadily integrating into modern health services, e-Health specific job opportunities are still relatively limited. E-Health workforce development must be given priority.

Keywords: e-health, postgraduate education, clinical practice, curriculum

Procedia PDF Downloads 164
29069 Antecedents and Consequences of Social Media Adoption in Travel and Tourism: Evidence from Customers and Industry

Authors: Mohamed A. Abou-Shouk, Mahamoud M. Hewedi

Abstract:

This study extends technology acceptance model (TAM) to investigate the antecedents and consequences of social media adoption by tourists and travel agents. It compares their perceptions on social media adoption and its consequences. Online survey was addressed to tourists and travel agents for data collection purposes. Structural equation modelling was employed for analysis purposes. The findings revealed that the majority of tourists and travel agents involved in the study believe in the usefulness of social media adoption for travel planning and marketing purposes. They agree that adopting social media could change the attitude of tourists towards specific destination or attraction and influence their purchasing decisions. This study contributes to knowledge by extending TAM and provides some managerial implication to marketers.

Keywords: TAM, social media, travel and tourism, travel agents

Procedia PDF Downloads 415
29068 Institutional Effectiveness in Fostering Student Retention and Success in First Year

Authors: Naziema B. Jappie

Abstract:

The objective of this study is to examine the relationship between college readiness characteristics and learning outcome assessment scores. About this, it is important to examine the first-year retention and success rate. In order to undertake this study, it will be necessary to look at proficiency levels on general and domain-specific knowledge and skills reflected on national benchmark test scores (NBT), in-college interventions and course-taking patterns. Preliminary results based on data from more than 1000 students suggest that there is a positive association between NBT scores and students’ 1st-year college GPA and their retention status. For example, 63% of students with a proficient level of math skills in the NBT had the highest level of GPA at the end of 1st-year of college in comparison to 56% of those who started with a primary or intermediate level, respectively. The retention rates among those with proficiency levels were also higher than those with basic or intermediate levels (98% vs. 93% and 88%, respectively). By the end of 3rd year in college, students with intermediate or proficient entering NBT math skills had 7% and 8% of dropout rate, compared to 14% for those started at primary level; a greater percentage of students qualified by the end of 3rd-year qualified among proficient students than that among intermediate or basic level students (50% vs. 44% and 27% respectively). The findings of this study added knowledge to the field in South Africa and are expected to help stakeholders and policymakers to better understand college learning and challenges for students with disadvantaged backgrounds and provide empirical evidence in support of related practices and policies.

Keywords: assessment, data analysis, performance, proficiency, policy, student success

Procedia PDF Downloads 134
29067 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, online marketplace, marketing, recommendation systems

Procedia PDF Downloads 113
29066 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health

Authors: Adam Gushgari

Abstract:

The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.

Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse

Procedia PDF Downloads 111
29065 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers

Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy

Abstract:

In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.

Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology

Procedia PDF Downloads 103
29064 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia

Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron

Abstract:

The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.

Keywords: endemic species, land use change, maximum entropy, spatial distribution

Procedia PDF Downloads 159
29063 Hematological Malignancies in Children and Parental Occupational Exposure

Authors: H. Kalboussi, A. Aloui, W. Boughattas, M. Maoua, A. Brahem, S. Chatti, O. El Maalel, F. Debbabi, N. Mrizak, Y. Ben Youssef, A. Khlif, I. Bougmiza

Abstract:

Background: In recent decades, the incidence of children's hematological malignancies has been increasing worldwide including Tunisia. Their severity is reflected in the importance of the medical, social and economic impact. This increase remains fully unexplained, and the involvement of genetic, environmental and occupational factors is strongly suspected. Materials and Methods: Our study is a cross-sectional survey of the type case-control conducted in the University Hospital of Farhat Hached of Sousse during the period ranging between 1 July 2011 and 30 June 2012,and which included children with acute leukemia compared to children unharmed by neoplastic disease . Cases and controls were matched by age and gender. Our objective was to: - Describe the socio-occupational characteristics of the parents of children with acute leukemia. - Identify potential occupational factors implicated in the genesis of acute leukemia. Result: The number of acute leukemia cases in the Hematology Service and day hospital of the University Hospital of Farhat Hached during the study period was 66 cases divided into in 40 boys and 26 girls with a sex ratio of 1.53. Our cases and controls were matched by age and gender. The risk of incidence of leukemia in children from smoking fathers was higher (p = 0.02, OR = 2.24, IC = [1.11 - 4.52]). The risk of incidence of leukemia in children from alcoholic fathers was higher with p = 0,009, OR = 3.9; CI = [1.33 - 11.39]. After adjusting different variables, the difference persisted significantly with pa = 0.03 and ORa = 3.5; ICa = [1.09 -11.6]. 25.7 % of cases had a family history of blood disease and neoplasia, whereas no control presented that. The difference was statistically significant (p = 0.006), OR = 1.46, IC = [1.38 - 1.56]. The parental occupational exposures associated to the occurrence of acute leukemia in children were: - Pesticides with a statistically significant difference (p = 0.03), OR = 2.94, IC = [1.06 - 8.13]. This difference persisted after adjustment with different variables pa = 0.01, ORa 3.75; ICa = [1.27 - 11.03]. - Cement without a statistically non-significant difference (p = 0.2). This difference has become significant after adjustment with the different variables pa = 0.03; ORa = 2.67; ICa = [1.06 - 6.7]. Conclusion: Parental exposure to occupational risk factors may play a role in the pathogenesis of acute leukemia in children.

Keywords: hematological malignancies, children, parents, occupational exposure

Procedia PDF Downloads 320
29062 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining

Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.

Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture

Procedia PDF Downloads 284
29061 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
29060 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status

Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra

Abstract:

The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.

Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees

Procedia PDF Downloads 117
29059 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma

Abstract:

The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.

Keywords: atomic force microscopy (AFM), nanochannel, specific down force energy (SDFE), Y shape, burr, silicon

Procedia PDF Downloads 408
29058 Adjectives in Academic Discourse: A Comparative Study of Research Articles

Authors: Beata Grymska

Abstract:

The research studies on academic discourse focus in general on lexical bundles, epistemic modality markers, or interactions between writers and readers. Following the research into the written forms of the academic community, this study concentrates on adjectives in research articles. The study investigates the distribution of adjectives in research articles in two academic disciplines: linguistics and medicine. It is corpus-based in design and consists of 100 linguistic and 100 medical research articles all written in English. The aim of the study is to compare the distribution of adjectives between the two corpora and four main parts of articles: IMRD (Introduction, Methods, Results, and Discussion). The second aim is to see if the two corpora share common core adjectives, e.g., different, important, specific, and if there are discipline-specific adjectives. The further part of the paper elaborates on adjectives use in the corpora together with examples. The results indicate that the two corpora do not differ in the distribution of adjectives to a great extent. The occurrences of the most frequently used adjectives depend on the academic discipline of the research articles. The concluding part reflects upon the role of adjectives in academic discourse and also presents how corpora can be helpful in composing academic texts.

Keywords: academic discourse, academic texts, adjectives, corpus analysis, research articles

Procedia PDF Downloads 192
29057 Occupational Safety and Health in the Wake of Drones

Authors: Hoda Rahmani, Gary Weckman

Abstract:

The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432.

Keywords: commercial drones, ergonomic interventions, occupational safety, pattern recognition

Procedia PDF Downloads 213
29056 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course

Authors: Ann-May Marais

Abstract:

South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.

Keywords: blended learning, professional development, induction course, integration of technology

Procedia PDF Downloads 163
29055 Exploring Inclusive Culture and Practice: The Perspectives of Macao Teachers in Informing Inclusive Teacher Education Programmes in Higher Education

Authors: Elisa Monteiro, Kiiko Ikegami

Abstract:

The inclusion of children with diverse learning needs and/or disabilities in regular classrooms has been identified as crucial to the provision of educational equity and quality for all students. In this, teachers play an essential role, as they have a strong impact on student attainment. Whilst the adoption of inclusive practice is increasing, with potential benefits for the teaching profession, there is also a rise in the level of its challenges in Macao as many more students with learning disabilities are now being included in general education classes. Consequently, there has been a significant focus on teacher professional development to ensure that teachers are adequately prepared to teach in inclusive classrooms that give access to diverse students. Major changes in teacher education will need to take place to include more inclusive education content and to equip teachers with the necessary skills in the area of inclusive practice. This paper draws on data from in-depth interviews with 20 teachers to examine teachers’ views of support, challenges, and barriers to inclusive practices at the school and classroom levels. Thematic analysis was utilised to determine major themes within the data. Several themes emerged and serve to illustrate the identified barriers and the potential value of effective teacher education. Suggestions for increased professional development opportunities for inclusive education specific to higher education institutions are presented and the implications for practice and teacher education are discussed.

Keywords: inclusion, inclusive practice, teacher education, higher education

Procedia PDF Downloads 87
29054 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)

Authors: Dong Tran, Thanh Dac Van, Ly Le

Abstract:

Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.

Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution

Procedia PDF Downloads 167
29053 Female Autism Spectrum Disorder and Understanding Rigid Repetitive Behaviors

Authors: Erin Micali, Katerina Tolstikova, Cheryl Maykel, Elizabeth Harwood

Abstract:

Female ASD is seldomly studied separately from males. Further, females with ASD are disproportionately underrepresented in the research at a rate of 3:1 (male to female). As such, much of the current understanding about female rigid repetitive behaviors (RRBs) stems from research’s understanding of male RRBs. This can be detrimental to understanding female ASD because this understanding of female RRBs largely discounts female camouflaging and the possibility that females present their autistic symptoms differently. Current literature suggests that females with ASD engage in fewer RRBs than males with ASD and when females do engage in RRBs, they are likely to engage in more subtle, less overt obsessions and repetitive behaviors than males. Method: The current study utilized a mixed methods research design to identify the type and frequency of RRBs that females with ASD engaged in by using a cross-sectional design. The researcher recruited only females to be part of the present study with the criteria they be at least age six and not have co-occurring cognitive impairment. Results: The researcher collected previous testing data (Autism Diagnostic Interview-Revised (ADI-R), Child or Adolescent/Adult Sensory Profile-2, Autism/ Empathy Quotient, Yale Brown Obsessive Compulsive Checklist, Rigid Repetitive Behavior Checklist (evaluator created list), and demographic questionnaire) from 25 total participants. The participants ages ranged from six to 52. The participants were 96% Caucasion and 4% Latin American. Qualitative analysis found the current participant pool engaged in six RRB themes including repetitive behaviors, socially restrictive behaviors, repetitive speech, difficulty with transition, obsessive behaviors, and restricted interests. The current dataset engaged in socially restrictive behaviors and restrictive interests most frequently. Within the main themes 40 subthemes were isolated, defined, and analyzed. Further, preliminary quantitative analysis was run to determine if age impacted camouflaging behaviors and overall presentation of RRBs. Within this dataset this was not founded. Further qualitative data will be run to determine if this dataset engaged in more overt or subtle RRBs to confirm or rebuff previous research. The researcher intends to run SPSS analysis to determine if there was statistical difference between each RRB theme and overall presentation. Secondly, each participant will be analyzed for presentation of RRB, age, and previous diagnoses. Conclusion: The present study aimed to assist in diagnostic clarity. This was achieved by collecting data from a female only participant pool across the lifespan. Current data aided in clarity of the type of RRBs engage in. A limited sample size was a barrier in this study.

Keywords: autism spectrum disorder, camouflaging, rigid repetitive behaviors, gender disparity

Procedia PDF Downloads 147
29052 The Economics of Ecosystem Services and Biodiversity: Valuing Ecotourism-Local Perspectives to Global Discourses-Stakeholders’ Analysis

Authors: Diptimayee Nayak

Abstract:

Ecotourism has been recognised as a popular component of alternative tourism, which claims to guard host local environment and economy. This concept of ecological tourism (eco-tourism) has become more meaningful in evaluating the recreational function and services of any pristine ecosystem in context of ‘The Economics of Ecosystem and Biodiversity (TEEB)’. This ecotourism is said to be a local solution to the global problem of conserving ecosystems and optimising the utilisations of their services. This paper takes a case of recreational services of an Indian protected area ecosystems ‘Bhitarakanika mangrove protected area’ discussing how ecotourism is functioning taking the perspectives of different stakeholders. Specific stakeholders are taken for analysis, viz., tourists and local people, as they are believed to be the major beneficiaries of ecotourism. The stakeholders’ analysis is evaluated on the basis of travel cost techniques (by using truncated Poisson distribution model) for tourists and descriptive and analytical tools for local people. The evaluation of stakeholders’ analysis of ecotourism has gained its impetus after the formulation of Ecotourism guidelines by the Ministry of Environment and Forest (MoEF), Government of India. The paper concludes that ecotourism issues and challenges are site-specific and region-specific; without critically focussing challenges of ecotourism faced at local level the discourses of ecotourism at global level cannot be tackled. Mere integration and replication of policies at global level to be followed at local level will not be successful (top down policies). Rather mainstreaming the decision making process at local level with the global policy stature helps to solve global issues to a bigger extent (bottom up).

Keywords: ecosystem services, ecotourism, TEEB, economic valuation, stakeholders, travel cost techniques

Procedia PDF Downloads 251
29051 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 151
29050 Context-Aware Recommender Systems Using User's Emotional State

Authors: Hoyeon Park, Kyoung-jae Kim

Abstract:

The product recommendation is a field of research that has received much attention in the recent information overload phenomenon. The proliferation of the mobile environment and social media cannot help but affect the results of the recommendation depending on how the factors of the user's situation are reflected in the recommendation process. Recently, research has been spreading attention to the context-aware recommender system which is to reflect user's contextual information in the recommendation process. However, until now, most of the context-aware recommender system researches have been limited in that they reflect the passive context of users. It is expected that the user will be able to express his/her contextual information through his/her active behavior and the importance of the context-aware recommender system reflecting this information can be increased. The purpose of this study is to propose a context-aware recommender system that can reflect the user's emotional state as an active context information to recommendation process. The context-aware recommender system is a recommender system that can make more sophisticated recommendations by utilizing the user's contextual information and has an advantage that the user's emotional factor can be considered as compared with the existing recommender systems. In this study, we propose a method to infer the user's emotional state, which is one of the user's context information, by using the user's facial expression data and to reflect it on the recommendation process. This study collects the facial expression data of a user who is looking at a specific product and the user's product preference score. Then, we classify the facial expression data into several categories according to the previous research and construct a model that can predict them. Next, the predicted results are applied to existing collaborative filtering with contextual information. As a result of the study, it was shown that the recommended results of the context-aware recommender system including facial expression information show improved results in terms of recommendation performance. Based on the results of this study, it is expected that future research will be conducted on recommender system reflecting various contextual information.

Keywords: context-aware, emotional state, recommender systems, business analytics

Procedia PDF Downloads 232
29049 Developing Future New Roles for Traditional Birth Attendants in Nigeria

Authors: Hauwau Mohammed

Abstract:

Research purpose: the integration of Traditional Birth Attendants (TBAs) has long been initiated into healthcare systems. This has been to help improve maternal mortality, particularly in developing countries. Nigeria is seen as one of the countries with a high maternal death rate due to common pregnancy complications and low resources. Communities with challenges of universal coverage of skilled workers rely on TBAs for pregnancy-related services, including delivery. The Sokoto State government has conducted several training programs on a significant number of TBAs to enable a formal integration of relationships with skilled healthcare for women in rural regions. This study aims to explore a standard method and develop an assessment framework for improving TBAs training programs in Sokoto State. Research Design, Methodology & Methods : Using a qualitative design, an interpretive phenomenology approach will be applied to explore the lived-experiences of 28 TBAs, who have undergone a form of training while also examining the strategies used to develop those programs through 8 policymakers and/or program trainers. For the collection stage, a focus group discussion and a face-to-face interview will be conducted, where the latter is for TBAs and the former for policymakers and training officials. Analysis: Data will be analyse through IPA format while using Nvivo to code and catalog personal experiential generated patterns. Secondary review: a scoping review of secondary data from Nigeria was used to map the knowledge gap and the extent of available data. The thematic analytic findings suggested that there are various approaches used to incorporate TBAs into the healthcare system, which include interventional programs targeted at specific health issues. In addition, incentives were used to encourage TBAs to facilitate the frequent use of skilled care for women.

Keywords: traditional birth attendants, Nigeria, training, program

Procedia PDF Downloads 84
29048 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 122
29047 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 888
29046 End to End Monitoring in Oracle Fusion Middleware for Data Verification

Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan

Abstract:

In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.

Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring

Procedia PDF Downloads 482
29045 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 149