Search results for: gambling decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4034

Search results for: gambling decision

1364 The Relationship between Hot and Cool Executive Function and Theory of Mind in School-Aged Children with Autism Spectrum Disorder

Authors: Evangelia-Chrysanthi Kouklari, Stella Tsermentseli, Claire P. Monks

Abstract:

Executive function (EF) refers to a set of future-oriented and goal-directed cognitive skills that are crucial for problem solving and social behaviour, as well as the ability to organise oneself. It has been suggested that EF could be conceptualised as two distinct but interrelated constructs, one emotional (hot) and one cognitive (cool), as it facilitates both affective and cognitive regulation. Cool EF has been found to be strongly related to Theory of Mind (ToM) that is the ability to infer mental states, but research has not taken into account the association between hot EF and ToM in Autism Spectrum Disorder (ASD) to date. The present study investigates the associations between both hot and cool EF and ToM in school-aged children with ASD. This cross-sectional study assesses 79 school-aged children with ASD (7-15 years) and 91 controls matched for age and IQ, on tasks tapping cool EF (working memory, inhibition, planning), hot EF (effective decision making, delay discounting), and ToM (emotional understanding and false/no false belief). Significant group differences in each EF measure support a global executive dysfunction in ASD. Strong associations between hot EF and ToM in ASD are reported for the first time (i.e. ToM emotional understanding and delay discounting). These findings highlight that hot EF also makes a unique contribution to the developmental profile of ASD. Considering the role of both hot and cool EF in association with ToM in individuals with ASD may aid in gaining a greater understanding not just of how these complex multifaceted cognitive abilities relate to one another, but their joint role in the distinct developmental pathway followed in ASD.

Keywords: ASD, executive function, school age, theory of mind

Procedia PDF Downloads 291
1363 ePLANETe Idea and Functionalities: Agricultural Sustainability Assessment, Biodiversity, and Stakeholder Involvement

Authors: S. K. Ashiquer Rahman

Abstract:

A cutting-edge online knowledge mediation system called "ePLANETe" provides a framework for building knowledge, tools and methods for all education, research and sustainable practices and elsewhere, as well as the deliberative assessment support of sustainability, biodiversity, and stakeholder involvement issues of the territorial development sector, e.g., agriculture.The purpose is to present, as sectorial and institutional perception, the 'ePLANETe' concept and functionalities as an experimental online platform for contributing the sustainability assessment, biodiversity, and stakeholder involvement. In the upshot, the concept of 'ePLANETe'isan investigation of the challenges of "online things, technology and application". The new digital technologies are exploited to facilitate collaborative technology and application to territorial development issues, e.g., agriculture. In order to investigate the dealing capacity (Qualitative and Quantitative) of sustainability, biodiversity, and stakeholder involvement of the agriculture sector through the stakeholder-based integrated assessment "Deliberation Support Tools (DST) and INTEGRAAL method" of collective resources. Specifically, this paper focuses on integrating system methodologies with deliberation tools for collective assessment and decision-making in implementing regional plans of agriculture. The aim of this report is to identify effective knowledge and tools and to enable deliberation methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.

Keywords: sustainability, biodiversity, stakeholder, dst, integraal

Procedia PDF Downloads 119
1362 Sexting Phenomenon in Educational Settings: A Data Mining Approach

Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera

Abstract:

Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.

Keywords: educational ethics, sexting, Greek sexters, sex education, data mining

Procedia PDF Downloads 182
1361 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 14
1360 The Effective Method for Postering Thinking Dispositions of Learners

Authors: H. Jalahi, A. Yazdanpanah Nozari

Abstract:

Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.

Keywords: assessment, authentic, medical courses, developmental

Procedia PDF Downloads 365
1359 Analyzing Healthy Eating Among Adolescent Teens Using the Socioecological Model

Authors: Kaavya Chandrasekar

Abstract:

Healthy eating is essential to maintain good health and stable mental status regardless of age. WHO describes that a healthy diet consists of incorporating more fruits and vegetables and reducing the consumption of sugary and salty foods into a regularly scheduled healthy diet. Although this attitude is rather uncommon among all age groups, it is notably uncommon among the teens being a very vulnerable state in a man’s life. Faulty dietary habits, in the long run, interfere with health, leading to obesity, cardiovascular diseases, and mental instability. This study collates a discussion on the barriers prevailing among adolescents, to inculcate healthy eating practices by means of the socioecological model. The studies consisted of teens aged 13 to 19 years from schools and colleges of both sexes. The socio-ecological model emphasizes the interplay and interconnectedness of elements at all levels of health behavior, acknowledging that the majority of public health issues are just too complicated to be solved from a single-level perspective. As a result, it necessitates that people are not considered in isolation from bigger social groups. According to the studies retrieved from ten articles studies conducted globally, more than five articles suggest that socioeconomic class, lack of adult supervision and easy access to fast food stores and schools affect their decision of healthy eating. Awareness via personalized intervention has been tried and found successful. Future research is still needed to address various dimensions of the issue.

Keywords: socio ecological model, healthy eating, adolescents, fast food consumption, interventions.

Procedia PDF Downloads 31
1358 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 47
1357 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas

Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu

Abstract:

Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.

Keywords: climate change, water needs, balance sheet, water quality

Procedia PDF Downloads 76
1356 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 41
1355 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 116
1354 Integrated Imaging Management System: An Approach in the Collaborative Coastal Resource Management of Bagac, Bataan

Authors: Aljon Pangan

Abstract:

The Philippines being an archipelagic country, is surrounded by coastlines (36,289 km), coastal waters (226,000 km²), oceanic waters (1.93 million km²) and territorial waters (2.2 million km²). Studies show that the Philippine coastal ecosystems are the most productive and biologically diverse in the world, however, plagued by degradation problems due to over-exploitation and illegal activities. The existence of coastal degradation issues in the country led to the emergence of Coastal Resource Management (CRM) as an approach to both national and local government in providing solutions for sustainable coastal resource utilization. CRM applies the idea of planning, implementing and monitoring through the lens of collaborative governance. It utilizes collective action and decision-making to achieve sustainable use of coastal resources. The Municipality of Bagac in Bataan is one of the coastal municipalities in the country who crafts its own CRM Program as a solution to coastal resource degradation and problems. Information and Communications Technology (ICT), particularly Integrated Imaging Management System (IIMS) is one approach that can be applied in the formula of collaborative governance which entails the Government, Private Sector, and Civil Society. IIMS can help policymakers, managers, and citizens in managing coastal resources through analyzed spatial data describing the physical, biological, and socioeconomic characteristics of the coastal areas. Moreover, this study will apply the qualitative approach in deciphering possible impacts of the application of IIMS in the Coastal Resource Management policy making and implementation of the Municipality of Bagac.

Keywords: coastal resource management, collaborative governance, integrated imaging management system, information and communication technology

Procedia PDF Downloads 400
1353 Ten Patterns of Organizational Misconduct and a Descriptive Model of Interactions

Authors: Ali Abbas

Abstract:

This paper presents a descriptive model of organizational misconduct based on observed patterns that occur before and after an ethical collapse. The patterns were classified by categorizing media articles in both "for-profit" and "not-for-profit" organizations. Based on the model parameters, the paper provides a descriptive model of various organizational deflection strategies under numerous scenarios, including situations where ethical complaints build-up, situations under which whistleblowers become more prevalent, situations where large scandals that relate to leadership occur, and strategies by which organizations deflect blame when pressure builds up or when media finds out. The model parameters start with the premise of a tolerance to double standards in unethical acts when conducted by leadership or by members of corporate governance. Following this premise, the model explains how organizations engage in discursive strategies to cover up the potential conflicts that arise, including secret agreements and weakening stakeholders who may oppose the organizational acts. Deflection strategies include "preemptive" and "post-complaint" secret agreements, absence of (or vague) documented procedures, engaging in blame and scapegoating, remaining silent on complaints until the media finds out, as well as being slow (if at all) to acknowledge misconduct and fast to cover it up. The results of this paper may be used to guide organizational leaders into the implications of such shortsighted strategies toward unethical acts, even if they are deemed legal. Validation of the model assumptions through numerous media articles is provided.

Keywords: ethical decision making, prediction, scandals, organizational strategies

Procedia PDF Downloads 128
1352 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School

Authors: Ahlam A. Alghamdi

Abstract:

For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.

Keywords: early learning, gender division, inclusion school, Saudi Arabia

Procedia PDF Downloads 154
1351 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 144
1350 The Impact of Unemployment on the Sexual Behaviour of Male Youth in Quzini, Eastern Cape, South Africa: A Qualitative Study

Authors: Jabulani Gilford Kheswa

Abstract:

This paper reports on the effects of unemployment on the sexual behaviour of male youth. Drawing from Jahoda’s deprivation theory, unemployed male youth is prone to psychological distress and as a result, they resort to drugs and alcohol abuse as a way to cope with discrimination. Studies showed that such youth is more inclined to be sexually aggressive and very often engage in criminal activities and risky sexual behaviour such as multiple sexual partners and unprotected sex to cover their feelings of emotional insecurities and negative self-concept. The purpose of the study was to investigate the impact of unemployment on the sexual behaviour of Xhosa- speaking male youth, aged 19-35, from Quzini Location, Eastern Cape, South Africa. A qualitative, explorative, descriptive and contextual design was followed using phenomenological method. The purposively sampled comprised fifteen unemployed males who gave their informed consent to be interviewed. For trustworthiness of the study, the researcher met the Lincoln and Guba’s principles, namely; credibility, dependability confirmability and transferability. The following themes were identified, namely; patriarchy, gender- based violence, drug abuse, stigma and discrimination, criminal activities, depression and low- self-esteem. Based on the findings, the recommendations are that the government and private sectors should create jobs aimed at reducing unemployment for unemployed youth and psycho-educational programmes that will equip them in the areas of sexual values and attitudes, communication and decision-making skills.

Keywords: discrimination, male-youth, sex, unemployment

Procedia PDF Downloads 274
1349 Testing Nature Based Solutions for Air Quality Improvement: Aveiro Case Study

Authors: A. Ascenso, C. Silveira, B. Augusto, S. Rafael, S. Coelho, J. Ferreira, A. Monteiro, P. Roebeling, A. I. Miranda

Abstract:

Innovative nature-based solutions (NBSs) can provide answers to the challenges that urban areas are currently facing due to urban densification and extreme weather conditions. The effects of NBSs are recognized and include improved quality of life, mental and physical health and improvement of air quality, among others. Part of the work developed in the scope of the UNaLab project, which aims to guide cities in developing and implementing their own co-creative NBSs, intends to assess the impacts of NBSs on air quality, using Eindhoven city as a case study. The state-of-the-art online air quality modelling system WRF-CHEM was applied to simulate meteorological and concentration fields over the study area with a spatial resolution of 1 km2 for the year 2015. The baseline simulation (without NBSs) was validated by comparing the model results with monitored data retrieved from the Eindhoven air quality database, showing an adequate model performance. In addition, land use changes were applied in a set of simulations to assess the effects of different types of NBSs. Finally, these simulations were compared with the baseline scenario and the impacts of the NBSs were assessed. Reductions on pollutant concentrations, namely for NOx and PM, were found after the application of the NBSs in the Eindhoven study area. The present work is particularly important to support public planners and decision makers in understanding the effects of their actions and planning more sustainable cities for the future.

Keywords: air quality, modelling approach, nature based solutions, urban area

Procedia PDF Downloads 240
1348 US-Iran Hostage Crisis by the Metaphor of Argo in the Light of Post-Modernist Post-Colonial and Realist Theories

Authors: Hatice Idil Gorgen

Abstract:

This paper argues that discourses and textuality which is literary tool of Western ethnocentrism create aggressive foreign policy against the West by Non-West countries. Quasi-colonial experiences create an inferiority complex on officially or not colonized areas by reconstructing their identity. This reconstructed identity leads revolution and resistance movement to feel secure themselves as a psychological defense against colonial powers. Knowledge learned by successful implementation of discourses grants right to has power for authority, in addition to serving as a tool to reinforce power of authority by its cognitive traits on foreign policy decision making. The combination of these points contributes to shaping and then make predictable state policies. In the methodology of paper, secondary data was firstly reviewed through university library using a range of sources such as academic abstract, OPAC system, bibliography databases and internet search engines. The film of Argo was used to strengthen and materialize theoretical explanations as a metaphor. This paper aims to highlight the cumulative effects on the construction of the identity throughout embedded discourses by textuality. To demonstrate it by a metaphor, Argo will be used as a primary source for good story-telling about history. U.S-Iran hostage crisis is mainly applied by aiming to see foundations Iran’s behavior in the context of its revolutionary identity and major influences of actions of U.S on it.

Keywords: discourse, post colonialism, post modernism, objectivity

Procedia PDF Downloads 160
1347 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 113
1346 Proposing an Improved Managerial-Based Business Process Framework

Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi

Abstract:

Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.

Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN

Procedia PDF Downloads 453
1345 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility

Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon

Abstract:

Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.

Keywords: hybrid choice model, airline, business travelers, domestic flights

Procedia PDF Downloads 14
1344 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 350
1343 Pull String to Stop: Public Utility Vehicle Modernization Program

Authors: Frederick Kobe O. Obar, Preity B. Quinzon, Trisha B. Tumbokon, Mario Joshua D. Marron, Kenichi Katsuo Kichiro A. Rimorin

Abstract:

The Public Utility Vehicle Modernization Program (PUVMP) is a program meant to reform the current state of the Philippines’ public transportation sector. This study determined the impact of the Public Utility Vehicle Modernization Program on San Fernando City, La Union's jeepney drivers, interviewing six individuals, three with traditional vehicles and three with modernized units. This study used a descriptive qualitative research design and employed purposive sampling to select the six participants suited for the study, who were then subjected to a semi-structured face-to-face interview. The gathered data was then analyzed through thematic analysis. The findings highlighted evidence that the jeepney drivers experienced abrupt and prevailing changes in their routine and in their everyday work. This study concludes that while the sentiment of the program was appreciated, it has changed the environment for jeepney drivers drastically, provoking many reactions. These changes have, of course, shifted the daily lives of the jeepney drivers significantly, but through adaptability, they found ways. Recommendations include flexible compliance policies, educational initiatives, and support for drivers, providing valuable insights for informed decision-making in the ongoing transportation modernization discussion. This study concluded that while the drivers are not opposed to reform, they are not entirely in approval of the current effects of the program as it is being implemented in their local area.

Keywords: transport reform, transport modernization, public transport, jeepney drivers, PUVMP, urban planning, public utility vehicles

Procedia PDF Downloads 69
1342 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 157
1341 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 292
1340 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 352
1339 Spatial Temporal Change of COVID-19 Vaccination Condition in the US: An Exploration Based on Space Time Cube

Authors: Yue Hao

Abstract:

COVID-19 vaccines not only protect individuals but society as a whole. In this case, having an understanding of the change and trend of vaccination conditions may shed some light on revising and making up-to-date policies regarding large-scale public health promotions and calls in order to lead and encourage the adoption of COVID-19 vaccines. However, vaccination status change over time and vary from place to place hidden patterns that were not fully explored in previous research. In our research, we took advantage of the spatial-temporal analytical methods in the domain of geographic information science and captured the spatial-temporal changes regarding COVID-19 vaccination status in the United States during 2020 and 2021. After conducting the emerging hot spots analysis on both the state level data of the US and county level data of California we found that: (1) at the macroscopic level, there is a continuously increasing trend of the vaccination rate in the US, but there is a variance on the spatial clusters at county level; (2) spatial hotspots and clusters with high vaccination amount over time were clustered around the west and east coast in regions like California and New York City where are densely populated with considerable economy conditions; (3) in terms of the growing trend of the daily vaccination among, Los Angeles County alone has very high statistics and dramatic increases over time. We hope that our findings can be valuable guidance for supporting future decision-making regarding vaccination policies as well as directing new research on relevant topics.

Keywords: COVID-19 vaccine, GIS, space time cube, spatial-temporal analysis

Procedia PDF Downloads 81
1338 Stakeholders' Engagement Process in the OBSERVE Project

Authors: Elisa Silva, Rui Lança, Fátima Farinha, Miguel José Oliveira, Manuel Duarte Pinheiro, Cátia Miguel

Abstract:

Tourism is one of the global engines of development. With good planning and management, it can be a positive force, bringing benefits to touristic destinations around the world. However, without constrains, boundaries well established and constant survey, tourism can be very harmful and induce destination’s degradation. In the interest of the tourism sector and the community it is important to develop the destination maintaining its sustainability. The OBSERVE project is an instrument for monitoring and evaluating the sustainability of the region of Algarve. Its main priority is to provide environmental, economic, social-cultural and institutional indicators to support the decision-making process towards a sustainable growth. In the pursuit of the objectives, it is being developed a digital platform where the significant indicators will be continuously updated. It is known that the successful development of a touristic region depends from the careful planning with the commitment of central and regional government, industry, services and community stakeholders. Understand the different perspectives of stakeholders is essential to engage them in the development planning. However, actual stakeholders’ engagement process is complex and not easy to accomplish. To create a consistent system of indicators designed to monitor and evaluate the sustainability performance of a touristic region it is necessary to access the local data and the consideration of the full range of values and uncertainties. This paper presents the OBSERVE project and describes the stakeholders´ engagement process highlighting the contributions, ambitions and constraints.

Keywords: sustainable tourism, stakeholders' engagement, OBSERVE project, Algarve region

Procedia PDF Downloads 170
1337 Analysis and Comparison of Prototypes of an Ergometric Step in a Multidisciplinary Design Process

Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, L. Di Thommazo, D. Braatz

Abstract:

Prototypes can be understood as representations of a product concept. Furthermore, prototyping consists in an important stage in product development and results in better team communication, decision making, testing and problem solving through feedback. Although there are several methods of prototyping suggested by recent studies for designers to choose from, some methods present different advantages, such as cost and time reduction, performance and fidelity, which should be taken in account during a product development project. In this multidisciplinary study, involving areas of physiotherapy, engineering and computer science (hardware and software), we compared four developed prototypes of an ergometric step: a virtual prototype, a 3D printed prototype, a bricolage prototype and a prototype manufactured by a third-party company. These prototypes were evaluated in a comparative-qualitative approach for their contribution to the concept’s maturation of the product, the different prototyping methods used and the advantages and disadvantages of each one based on the product’s design specifications (performance, safety, materials, cost, maintenance, usability, ergonomics and portability). Our results indicated that despite prototypes show overall advantages, all of them have limitations, thus being crucial to have different methods of testing and interacting with the product. Additionally, virtual and 3D printed prototypes were essential at early stages of the project due to their low-cost and high-fidelity representation of the product, while the prototype manufactured by a third-party company and bricolage prototype introduced functional tests in real scenarios, allowing more detailed evaluations. This study also resulted in a patent for an ergometric step.

Keywords: Product Design, Product Development, Prototypes, Step

Procedia PDF Downloads 117
1336 Financial Capacity, Governance, and Corporate Engagement in Environmental Protection

Authors: Lubica Hikkerova, Jean-Michel Sahut

Abstract:

Environmental protection remains a global challenge but, since 2012, there has been a progressive decline in corporate engagement in environmental protection issues. This study seeks to investigate the role of financial capacity and governance in improving the level of environmental engagement of companies. The regression technique is applied to data on 351 large European companies from the ASSET4-ESG database for the 2007-2015 period. Firstly, the results show that the companies in the sample are fairly engaged in environmental protection, with a strong dispersion representing nearly four times the average. This means that the companies in the sample do not share the same level of engagement in matters of environmental protection, some being more committed than others. Secondly, the results reveal that the financial capacity of the company, as assessed through its indicators, has a significant effect on its level of environmental protection engagement in the present sample. This effect is more positive the higher the profits the company makes, and more negative the more heavily indebted or, the higher the rates of dividends it pays per share. Lastly, the results also show that a better quality of governance plays an important role in the decision to undertake actions leading to environmental protection. More specifically, the degree of management implication in the running of the business, the respect of the rights of the shareholders, the effectiveness of the control exerted by the board of directors, and, to a lesser extent, the independence of the audit committee, are variables which have a positive and significant influence on the level of environmental engagement of companies.

Keywords: financial capacity, corporate governance, environmental engagement, stakeholder theory, theory of organizational legitimacy, theory of resources and capabilities

Procedia PDF Downloads 189
1335 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan

Authors: Muhammad Zafarullah Khan, Sumeera Abbasi

Abstract:

The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.

Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa

Procedia PDF Downloads 257