Search results for: Wireless Sensor Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6170

Search results for: Wireless Sensor Network

3500 An Evaluation of Impact of Video Billboard on the Marketing of GSM Services in Lagos Metropolis

Authors: Shola Haruna Adeosun, F. Adebiyi Ajoke, Odedeji Adeoye

Abstract:

Video billboard advertising by networks and brand switching was conceived out of inquisition at the huge billboard advertising expenditures made by the three major GSM network operators in Nigeria. The study was anchored on Lagos State Metropolis with a current census population over 1,000,000. From this population, a purposive sample of 400 was adopted, and the questionnaire designed for the survey was carefully allocated to members of this ample in the five geographical zones of the city so that each rung of the society was well represented. The data obtained were analyzed using tables and simple percentages. The results obtained showed that subscribers of these networks were hardly influenced by the video billboard advertisements. They overwhelmingly showed that rather than the slogans of the GSM networks carried on the video billboards, it was the incentives to subscribers as well as the promotional strategies of these organizations that moved them to switch from one network to another. These switching lasted only as long as the incentives and promotions were in effect. The results of the study also seemed to rekindle the age-old debate on media effects, by the unyielding schools of the theory of ‘all-powerful media’, ‘the limited effects media’, ‘the controlled effects media’ and ‘the negotiated media influence’.

Keywords: evaluation, impact, video billboard, marketing, services

Procedia PDF Downloads 253
3499 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 113
3498 Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant

Authors: Ting Kai Chia, Ruifeng Yan, Feifei Bai, Tapan Saha

Abstract:

This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks.

Keywords: PV, oscillation, modelling, wind

Procedia PDF Downloads 37
3497 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 161
3496 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia

Authors: Farhan Beg, Raymond Moberly

Abstract:

The Indian subcontinent is facing a massive challenge with regards to energy security in member countries, to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts. The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Besides enabling energy security in the subcontinent, it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC-HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.

Keywords: super grid, wind and solar energy, high voltage direct current, electricity management, load flow analysis

Procedia PDF Downloads 428
3495 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 417
3494 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 467
3493 Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing

Authors: Samar Y. Al-Dabagh, Adawiya J. Haider, Mirvat D. Majed

Abstract:

Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C.

Keywords: pulsed laser deposition (PLD), TiO2 doped thin films, nanostructure, gas sensor

Procedia PDF Downloads 382
3492 The Effectiveness of Orthogonal Frequency Division Multiplexing as Modulation Technique

Authors: Mohamed O. Babana

Abstract:

In wireless channel multipath is the propagation phenomena where the transmitted signal arrive at the receiver side with many of paths, the signal at these paths arrive with different time delay the results is random signal fading due to intersymbols interference(ISI). This paper deals with identification of orthogonal frequency division multiplexing (OFDM) technology, and how it is used to overcome intersymbol interference due to multipath. Also investigates the effect of Additive White Gaussian Noise Channel (AWGN) on OFDM using multi-level modulation of Phase Shift Keying (PSK), computer simulation to calculate the bit error rate (BER) under AWGN channel is applied. A comparison study is carried out to obtain the Bit Error Rate performance for OFDM to identify the best multi-level modulation of PSK.

Keywords: intersymbol interference(ISI), bit error rate(BER), modulation, multiplexing, simulation

Procedia PDF Downloads 422
3491 Joint Discrete Hartley Transform-Clipping for Peak to Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System

Authors: Selcuk Comlekci, Mohammed Aboajmaa

Abstract:

Orthogonal frequency division multiplexing (OFDM) is promising technique for the modern wireless communications systems due to its robustness against multipath environment. The high peak to average power ratio (PAPR) of the transmitted signal is one of the major drawbacks of OFDM system, PAPR degrade the performance of bit error rate (BER) and effect on the linear characteristics of high power amplifier (HPA). In this paper, we proposed DHT-Clipping reduction technique to reduce the high PAPR by the combination between discrete Hartley transform (DHT) and Clipping techniques. From the simulation results, we notified that DHT-Clipping technique offers better PAPR reduction than DHT and Clipping, as well as DHT-Clipping introduce improved BER performance better than clipping.

Keywords: ISI, cyclic prefix, BER, PAPR, HPA, DHT, subcarrier

Procedia PDF Downloads 439
3490 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: particle swarm optimization, GIS, traffic data, outliers

Procedia PDF Downloads 483
3489 Humidity Sensing Behavior of Graphene Oxide on Porous Silicon Substrate

Authors: Amirhossein Hasani, Shamin Houshmand Sharifi

Abstract:

In this work, we investigate humidity sensing behavior of the graphene oxide with porous silicon substrate. By evaporation method, aluminum interdigital electrodes have been deposited onto porous silicon substrate. Then, by drop-casting method graphene oxide solution was deposited onto electrodes. The porous silicon was formed by electrochemical etching. The experimental results showed that using porous silicon substrate, we obtained two times larger sensitivity and response time compared with the results obtained with silicon substrate without porosity.

Keywords: graphene oxide, porous silicon, humidity sensor, electrochemical

Procedia PDF Downloads 605
3488 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 176
3487 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations

Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu

Abstract:

Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.

Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated

Procedia PDF Downloads 370
3486 Using Power Flow Analysis for Understanding UPQC’s Behaviors

Authors: O. Abdelkhalek, A. Naimi, M. Rami, M. N. Tandjaoui, A. Kechich

Abstract:

This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done.

Keywords: UPQC, Power flow analysis, shunt filter, series filter.

Procedia PDF Downloads 572
3485 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots

Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra

Abstract:

Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.

Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation

Procedia PDF Downloads 189
3484 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 171
3483 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 259
3482 A Contribution to Human Activities Recognition Using Expert System Techniques

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 118
3481 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 101
3480 Emergency Condition Discrimination for Single People Using a CO2 Sensor and Body Detectors

Authors: Taiyo Matsumura, Kota Funabashi, Nobumichi Sakai, Takashi Ono

Abstract:

The purpose of this research is to construct a watching system that monitors human activity in a room and detects abnormalities at an early stage to prevent unattended deaths of people living alone. In this article, we propose a method whereby highly urgent abnormal conditions of a person are determined by changes in the concentration of CO2 generated from activity and respiration in a room. We also discussed the effects the amount of activity has on the determination. The results showed that this discrimination method is not dependent on the amount of activity and is effective in judging highly urgent abnormal conditions.

Keywords: abnormal conditions, multiple sensors, people living alone, respiratory arrest, unattended death, watching system

Procedia PDF Downloads 137
3479 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 67
3478 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 639
3477 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
3476 Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits

Authors: Divya Pradip Roy, Md. Zahirul Alam Chowdhury

Abstract:

Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes.

Keywords: EMG, high pass filter, instrumentation amplifier, inverting amplifier, low pass filter, neuromuscular

Procedia PDF Downloads 175
3475 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 76
3474 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 113
3473 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)

Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.

Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone

Procedia PDF Downloads 367
3472 Integrating Wound Location Data with Deep Learning for Improved Wound Classification

Authors: Mouli Banga, Chaya Ravindra

Abstract:

Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.

Keywords: wound classification, MobileNetV2, ResNet50, multimodel

Procedia PDF Downloads 32
3471 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

Authors: Shengqi Yu, Jinwei Zhao

Abstract:

This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.

Keywords: time base circuit, automatic control, zero-crossing trigger, temperature control

Procedia PDF Downloads 481