Search results for: wind park model
18020 Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil
Authors: Eddegdag Nasser, Naamane Azzeddine, Radouani Mohammed, Ensam Meknes
Abstract:
In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model.Keywords: supersonic, viscous, triple deck technique, asymptotic methods, AF300 supersonic wind tunnel, reduced airfoil model
Procedia PDF Downloads 24018019 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand
Authors: Napat Watjanatepin, Wikorn Wong-Satiean
Abstract:
The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand
Procedia PDF Downloads 31418018 Urban Park Green Space Planning and Construction under the Theory of Environmental Justice
Authors: Ma Chaoyang
Abstract:
This article starts from the perspective of environmental justice theory and analyzes the accessibility and regional equity of park green spaces in the central urban area of Chengdu in 2022 based on the improved Gaussian 2SFCA analysis method and Gini coefficient method. Then, according to the relevant analysis model, it further explores the correlation between the spatial distribution of park green spaces and the socio-economic conditions of residents in order to provide a reference for the construction and research of Chengdu's park city under the guidance of fairness and justice. The results show that: (1) Overall, the spatial distribution of parks and green spaces in Chengdu shows a significantly uneven distribution of extreme core edge, with a certain degree of unfairness; that is, there is an environmental injustice pattern. (2) The spatial layout of urban parks and green spaces is subject to strong guiding interference from the socio-economic level; that is, there is a high correlation between housing prices and the tendency of parks. (3) Green space resources Gini coefficient analysis shows that residents of the three modes of transportation in the study area have unequal opportunities to enjoy park and green space services, and the degree of unfairness in walking is much greater than that in cycling and cycling.Keywords: parks and green spaces, environmental justice, two step mobile search method, Gini coefficient, spatial distribution
Procedia PDF Downloads 5018017 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 26718016 Plasma Actuator Application to Control Surfaces of a Model Aircraft
Authors: Yuta Moriyama, Etsuo Morishita
Abstract:
Plasma actuator is very effective to recover stall flows over an upper airfoil surface. We first manufacture the actuator, test the stability of the device by trial and error basis and find the conditions for steady operations. We visualize the flow around an airfoil in the smoke tunnel and observe the stall recovery. The plasma actuator is stationary device and has no moving parts, and it might be an ideal device to control a model aircraft. We can use the actuator not only as a stall recovery device but also as a spoiler. We put the actuator near the leading edge of an elevator of a model aircraft as a spoiler, and measure the aerodynamic forces by a three-component balance. We observe the effect of the plasma actuator on the aerodynamic forces and the device effectiveness changes depending on the angle of attack whether it is positive or negative. We also visualize the flow caused by the plasma actuator by a desk-top Schlieren photography which is otherwise very difficult in a low-speed wind tunnel experiment.Keywords: aerodynamics, plasma actuator, model aircraft, wind tunnel
Procedia PDF Downloads 37318015 Data Driven Infrastructure Planning for Offshore Wind farms
Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree
Abstract:
The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data
Procedia PDF Downloads 8618014 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season
Authors: Benedictus Asriparusa
Abstract:
In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.Keywords: flaring system, fluent model, dissemination of pollutant, transition season
Procedia PDF Downloads 38018013 Harnessing Train-Induced Airflows in Underground Metro Stations for Renewable Energy Generation: A Feasibility Study Using Bayesian Modeling and RETScreen
Authors: Lisha Tan, Yunbo Nie, Mohammad Rahnama
Abstract:
This study investigates the feasibility of harnessing train-induced airflows in underground metro stations as a source of renewable energy. Field measurements were conducted at multiple SkyTrain stations to assess wind speed distributions caused by passing trains. The data revealed significant airflow velocities with multimodal characteristics driven by varying train operations. These airflow velocities represent substantial kinetic energy that can be converted into usable power. Calculations showed that wind power densities within the underground tunnels ranged from 0.97 W/m² to 3.46 W/m², based on average cubed wind speeds, indicating considerable energy content available for harvesting. A Bayesian method was utilized to model these wind speed distributions, effectively capturing the complex airflow patterns. Further analysis using RETScreen evaluated the cost-benefit and environmental impact of implementing energy harvesting systems. Preliminary results suggest that the proposed system could result in substantial energy savings, reduce CO₂ emissions, and provide a favorable payback period, highlighting the economic and environmental viability of integrating wind turbines into metro stations.Keywords: train-induced airflows, renewable energy generation, wind power density, RETScreen
Procedia PDF Downloads 1618012 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 7918011 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles
Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto
Abstract:
Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design
Procedia PDF Downloads 25918010 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 13518009 Eco-Friendly Cleansers Initiation for Eco-Campsite Development in Khao Yai National Park, Thailand
Authors: Tatsanawalai Utarasakul
Abstract:
Environmental impact has occurred at Khao Yai National Park, especially the water pollution by tourist activities as a result of 800,000 tourists visiting annually. To develop an eco-campsite, eco-friendly cleansers were implemented in Lam Ta Khlong and Pha Kluay Mai Campsites for tourists and restaurants. The results indicated the positive effects of environmentally friendly cleansers on water quality in Lam Ta Khlong River and can be implemented in other protected areas to decrease chemical contamination in ecosystems.Keywords: sustainable tourism management, eco-campsite, Khao Yai National Park, ecology
Procedia PDF Downloads 39518008 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine
Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao
Abstract:
The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)
Procedia PDF Downloads 34518007 A Study on Optimum Shape in According to Equivalent Stress Distributions at the Die and Plug in the Multi-Pass Drawing Process
Authors: Yeon-Jong Jeong, Mok-Tan Ahn, Seok-Hyeon Park, Seong-Hun Ha, Joon-Hong Park, Jong-Bae Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factors influencing the productivity and formability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and formability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: multi-pass shape drawing, equivalent stress, FEM, finite element method, optimum shape
Procedia PDF Downloads 48118006 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 3318005 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 33718004 Profile Analysis and Experiences on the Tourism of Jalapao State Park, Tocantins, Brazil
Authors: Veruska C. Dutra, Mary L. G. S. Senna, Felipe S. Spindler
Abstract:
The State Park Jalapao - PEJ proved to be one of the protected areas that has attracted tourists from all over the world with its unique scenic landscapes. Although the region already has a considerable tourist flow, to our knowledge there is a lack of continuity of studies in the region capable of drawing a plan of activities, such as the profile of the tourist and analysis of their experiences in the region, carried out from 2006-2007. Therefore, this study was proposed to know the profile and experiences of tourists visiting the park today, making a connection with the earlier study, in order to generate subsidies to trace improvement actions. We conducted interviews with tourists in the main tourism season 2015. The results show that after eight years of carrying out the first study, there were no changes, highlighting the lack of a tourism plan for the park.Keywords: Jalapao, profile tourist, level, satisfaction
Procedia PDF Downloads 39718003 An Overview of the Wind and Wave Climate in the Romanian Nearshore
Authors: Liliana Rusu
Abstract:
The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.Keywords: numerical simulations, Romanian nearshore, waves, wind
Procedia PDF Downloads 34418002 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine
Procedia PDF Downloads 26018001 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades
Authors: Chi Zhang, Hua-Peng Chen
Abstract:
With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.
Procedia PDF Downloads 41318000 Spatial Suitability Assessment of Onshore Wind Systems Using the Analytic Hierarchy Process
Authors: Ayat-Allah Bouramdane
Abstract:
Since 2010, there have been sustained decreases in the unit costs of onshore wind energy and large increases in its deployment, varying widely across regions. In fact, the onshore wind production is affected by air density— because cold air is more dense and therefore more effective at producing wind power— and by wind speed—as wind turbines cannot operate in very low or extreme stormy winds. The wind speed is essentially affected by the surface friction or the roughness and other topographic features of the land, which slow down winds significantly over the continent. Hence, the identification of the most appropriate locations of onshore wind systems is crucial to maximize their energy output and therefore minimize their Levelized Cost of Electricity (LCOE). This study focuses on the preliminary assessment of onshore wind energy potential, in several areas in Morocco with a particular focus on the Dakhla city, by analyzing the diurnal and seasonal variability of wind speed for different hub heights, the frequency distribution of wind speed, the wind rose and the wind performance indicators such as wind power density, capacity factor, and LCOE. In addition to climate criterion, other criteria (i.e., topography, location, environment) were selected fromGeographic Referenced Information (GRI), reflecting different considerations. The impact of each criterion on the suitability map of onshore wind farms was identified using the Analytic Hierarchy Process (AHP). We find that the majority of suitable zones are located along the Atlantic Ocean and the Mediterranean Sea. We discuss the sensitivity of the onshore wind site suitability to different aspects such as the methodology—by comparing the Multi-Criteria Decision-Making (MCDM)-AHP results to the Mean-Variance Portfolio optimization framework—and the potential impact of climate change on this suitability map, and provide the final recommendations to the Moroccan energy strategy by analyzing if the actual Morocco's onshore wind installations are located within areas deemed suitable. This analysis may serve as a decision-making framework for cost-effective investment in onshore wind power in Morocco and to shape the future sustainable development of the Dakhla city.Keywords: analytic hierarchy process (ahp), dakhla, geographic referenced information, morocco, multi-criteria decision-making, onshore wind, site suitability.
Procedia PDF Downloads 16917999 Design of the Fiber Lay-Up for the Composite Wind Turbine Blade in VARTM
Authors: Tzai-Shiung Li, Wen-Bin Young
Abstract:
The wind turbine blade sustains various kinds of loadings during the operating and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. In the fabrication process of the vacuum assisted resin transfer molding, the fiber content of the turbine blade depends on the vacuum pressure. In this study, a design of the fiber layup for the vacuum assisted resin transfer molding is conducted to achieve the efficient utilization the material strength. This design is for the wind turbine blade consisting of shell skins with or without the spar structure.Keywords: resin film infiltration, vacuum assisted resin transfer molding process, wind turbine blade, composite materials
Procedia PDF Downloads 38217998 The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines
Authors: Jun Liu, Feihang Zhou, Gungyi Wang
Abstract:
This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.Keywords: damping, direct-driven PMSG wind power system, mechanical vibration, torque control
Procedia PDF Downloads 33317997 A Contested Territory in a Sacralized Landscape: The Fight of the Gich Community over Semien Mountains National Park
Authors: Marshet Girmay
Abstract:
Local community involvement is widely considered vital for the sustainability of heritage management. Yet, it is often the case that heritage-related projects lag behind in community involvement. In the Semien Mountains the creation, first, and expansion, later, of the National Park has led to several conflicts with the local communities that for centuries have inhabited the area. Local communities have only been passive actors in the plans to expand the Park set up by UNESCO and by local decision makers. This paper investigates the causes that led the Gich community, one of the communities affected by the Park’s expansion, to refuse the resettlement plan offered by the authorities. Qualitative research methods were employed, including document analysis, community conference and interview of informants. The paper shows that although the local community of Gich was highly attached to the Park’s heritage assets, their level of involvement in the heritage management was very low due to shortcomings in the design and implementation of official policies. Therefore, their attitude towards the Park’s managers has been until the present one of mistrust and opposition. The paper recommends to policy-makers a series of measures more sensitive towards local communities, such as that the development agencies act as true communication facilitators and regional authorities nurture sincere relationships with the locals.Keywords: Gich, heritage management, local communities, Semen Mountains, sustainability, UNESCO, world heritage site
Procedia PDF Downloads 33717996 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah
Authors: F. Ahwide, Y. Bouker, K. Hatem
Abstract:
This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Derna, average speeds are 10 m, 20 m, and 40 m, and respectively 6.57 m/s, 7.18 m/s, and 8.09 m/s. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (29.4 % of total expected wind energy), followed by 19.9 % SSW, 11.9% NNW, 8.6% WNW and 8.2% S. Furthermore in Al-Maqrun: the most powerful sector is W (26.8 % of total expected wind energy), followed by 12.3 % WSW and 9.5% WNW. While in Goterria: the most powerful sector is S (14.8 % of total expected wind energy), followed by SSE, SE, and WSW. And Misalatha: the most powerful sector is S, by far represents 28.5% of the expected power, followed by SSE and SE. As for Tarhuna, it is by far SSE and SE, representing each one two times the expected energy of the third powerful sector (NW). In Al-Asaaba: it is SSE by far represents 50% of the expected power, followed by S. It can to be noted that the high frequency of the south direction winds, that come from the desert could cause a high frequency of dust episodes. This fact then, should be taken into account in order to take appropriate measures to prevent wind turbine deterioration. In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna, and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested. At 80 m, the estimation of energy yield for Derna, Al-Maqrun, Tarhuna, and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m, the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively . It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.Keywords: wind turbines, wind data, energy yield, micrositting
Procedia PDF Downloads 18717995 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines
Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz
Abstract:
Steel tubular towers serving as support structures for large wind turbines are subject to several hundred million stress cycles arising from the turbulent nature of the wind. This causes high-cycle fatigue which can govern tower design. The practice of maintaining the support structure after wind turbines reach its typical 20-year design life have become common, but without quantifying the changes in the reliability on the tower. There are several studies on this topic, but most of them are based on the S-N curve approach using the Miner’s rule damage summation method, the de-facto standard in the wind industry. However, the qualitative nature of Miner’s method makes desirable the use of fracture mechanics to measure the effects of fatigue in the capacity curve of the structure, which is important in order to evaluate the integrity and reliability of these towers. Temporal and spatially varying wind speed time histories are simulated based on power spectral density and coherence functions. Simulations are then applied to a SAP2000 finite element model and step-by-step analysis is used to obtain the stress time histories for a range of representative wind speeds expected during service conditions of the wind turbine. Rainflow method is then used to obtain cycle and stress range information of each of these time histories and a statistical analysis is performed to obtain the distribution parameters of each variable. Monte Carlo simulation is used here to evaluate crack growth over time in the tower base using the Paris-Erdogan equation. A nonlinear static pushover analysis to assess the capacity curve of the structure after a number of years is performed. The capacity curves are then used to evaluate the changes in reliability of a steel tower located in Oaxaca, Mexico, where wind energy facilities are expected to grow in the near future. Results show that fatigue on the tower base can have significant effects on the structural capacity of the wind turbine, especially after the 20-year design life when the crack growth curve starts behaving exponentially.Keywords: crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines
Procedia PDF Downloads 51717994 CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room
Authors: Amirreza Niktash, B. P. Huynh
Abstract:
A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications.Keywords: CFD, RANS, ventilation, windcatcher
Procedia PDF Downloads 42917993 Computational Design, Simulation, and Wind Tunnel Testing of a Stabilator for a Fixed Wing Aircraft
Authors: Kartik Gupta, Umar Khan, Mayur Parab, Dhiraj Chaudhari, Afzal Ansari
Abstract:
The report focuses on the study related to the Design and Simulation of a stabilator (an all-movable horizontal stabilizer) for a fixed-wing aircraft. The project involves the development of a computerized direct optimization procedure for designing an aircraft all-movable stabilator. This procedure evaluates various design variables to synthesize an optimal stabilator that meets specific requirements, including performance, control, stability, strength, and flutter velocity constraints. The work signifies the CFD (Computational Fluid Dynamics) analysis of the airfoils used in the stabilator along with the CFD analysis of the Stabilizer and Stabilator of an aircraft named Thorp- T18 in software like XFLR5 and ANSYS-Fluent. A comparative analysis between a Stabilizer and Stabilator of equal surface area and under the same environmental conditions was done, and the percentage of drag reduced by the Stabilator for the same amount of lift generated as the Stabilizer was also calculated lastly, Wind tunnel testing was performed on a scale down model of the Stabilizer and Stabilator and the results of the Wind tunnel testing were compared with the results of CFD.Keywords: wind tunnel testing, CFD, stabilizer, stabilator
Procedia PDF Downloads 6017992 Ambient Vibration Test and Numerical Modelling of Wind Turbine Towers including Soil Structure Interaction
Authors: Heba Kamal, Ghada Saudi
Abstract:
Due to The rapid expansion of energy and growing number of wind turbines construction in earthquake areas, a design method for simple and accurate evaluation of seismic load to ensure structural integrity is required. In Egypt, there are some appropriate places to build wind turbine towers lie in active seismically regions, so accurate analysis is necessary for prediction of seismic loads with consideration of intensity of the earthquake, soil and structural characteristics. In this research, seismic behavior of wind turbine towers Gamesa Type G52 in Zafarana Wind Farm Egypt is investigated using experimental work by ambient vibration test, and fully dynamic analysis based on time history from El Aqaba Earthquake 1995 using 3D by PLAXIS 3D software, including the soil structure interaction effect. The results obtained from dynamic analyses are discussed. From this study, it is concluded that, the fully dynamic seismic analysis based on used PLAXIS 3D with the aid of the full scale ambient vibration test gives almost good simulation for the seismic loads that can be applied to wind turbine tower design in Egypt.Keywords: Wind turbine towers, Zafarana Wind Farm, Gamesa Type G52, ambient vibration test
Procedia PDF Downloads 20817991 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications
Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino
Abstract:
The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses
Procedia PDF Downloads 181