Search results for: test suite optimization
12093 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol
Authors: S. Vasundra, D. Venkatesh
Abstract:
Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.Keywords: wireless networks, ant colony optimization, load balancing, architecture
Procedia PDF Downloads 42812092 Application of Heuristic Integration Ant Colony Optimization in Path Planning
Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang
Abstract:
This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.Keywords: ant colony optimization, heuristic integration, path planning, probability formula
Procedia PDF Downloads 25512091 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications
Authors: Mohamed Rahal, Djaouida Guetta
Abstract:
In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations
Procedia PDF Downloads 37512090 Genetic Algorithm Optimization of Microcantilever Based Resonator
Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti
Abstract:
Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization
Procedia PDF Downloads 55412089 A New Class of Conjugate Gradient Methods Based on a Modified Search Direction for Unconstrained Optimization
Authors: Belloufi Mohammed, Sellami Badreddine
Abstract:
Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of conjugate gradient methods which ensures sufficient descent. Moreover, we propose a new search direction with the Wolfe line search technique for solving unconstrained optimization problems, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.Keywords: unconstrained optimization, conjugate gradient method, sufficient descent property, numerical comparisons
Procedia PDF Downloads 40712088 Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding
Authors: Fatiha Teklal, Bachir Kacimi, Arezki Djebbar
Abstract:
The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.Keywords: Fiber, Interface, Matrix, Micromechanics, Pull-out
Procedia PDF Downloads 12212087 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems
Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen
Abstract:
Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis
Procedia PDF Downloads 56812086 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool
Authors: Lu Xi, Li Pan, Wen Mengmeng
Abstract:
The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.Keywords: machine tool, optimization, modal analysis, stiffness matching
Procedia PDF Downloads 10612085 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains
Authors: Christian Angerer, Markus Lienkamp
Abstract:
Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx
Procedia PDF Downloads 42112084 Spare Part Inventory Optimization Policy: A Study Literature
Authors: Zukhrof Romadhon, Nani Kurniati
Abstract:
Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.Keywords: spare part, spare part inventory, inventory model, optimization, maintenance
Procedia PDF Downloads 6912083 Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)
Authors: Jaber Nikpouri, Arsalan Amralizadeh
Abstract:
In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance.Keywords: biogeography-based optimization, path planning, obstacle detection, robotic manipulator
Procedia PDF Downloads 30812082 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds
Authors: Seyedehsomayeh Hosseini
Abstract:
Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential
Procedia PDF Downloads 36512081 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test
Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea
Abstract:
In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence
Procedia PDF Downloads 10112080 An Analysis of Non-Elliptic Curve Based Primality Tests
Authors: William Wong, Zakaria Alomari, Hon Ching Lai, Zhida Li
Abstract:
Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64.Keywords: primality tests, Fermat’s primality test, Miller-Rabin primality test, Baillie-PSW primality test, AKS primality test
Procedia PDF Downloads 9412079 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator
Authors: Mohammad Ruhul Amin, Nusrat Jahan
Abstract:
Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization
Procedia PDF Downloads 50112078 Structural Damage Detection via Incomplete Model Data Using Output Data Only
Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation
Procedia PDF Downloads 36712077 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013
Authors: Panwasn Mahalawalert
Abstract:
The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement
Procedia PDF Downloads 41612076 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing
Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang
Abstract:
Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment
Procedia PDF Downloads 17512075 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 17712074 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 23312073 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints
Procedia PDF Downloads 58412072 An Investigation of Differential Item and Test Functioning of Scholastic Aptitude Test 2011 (SWUSAT 2011)
Authors: Ruangdech Sirikit
Abstract:
The purposes of this study were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2011 (SWUSAT 2011) SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was carried out in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of data analysis for all 10 tests in year 2011. Sex was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF was between 10% - 46.67%. There are 4 tests that most of items favors female group. There are 3 tests that most of items favors male group and there are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small DIF effect variance.Keywords: differential item functioning, differential test functioning, SWUSAT, aptitude test
Procedia PDF Downloads 61512071 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization
Authors: Martha C. Orazulume, Jibril D. Jiya
Abstract:
Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.Keywords: Attitude Control, Flexible Satellite, Particle Swarm Optimization, PID Controller and Optimization
Procedia PDF Downloads 40312070 Structural Optimization Using Catenary and Other Natural Shapes
Authors: Mitchell Gohnert
Abstract:
This paper reviews some fundamental concepts of structural optimization, which is focused on the shape of the structure. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape to accommodate natural stress flow. The main objective of structural optimization is to direct the thrust line along the axis of the member. Optimal shapes include the catenary arch or dome, triangular shapes, and columns. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined. Structures, however, must resist multiple load patterns. An optimal shape is still possible by ensuring that the thrust lines fall within the middle third of the member.Keywords: optimization, natural structures, shells, catenary, domes, arches
Procedia PDF Downloads 4712069 Optimization of Electrocoagulation Process Using Duelist Algorithm
Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti
Abstract:
The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption
Procedia PDF Downloads 47312068 Wally Feelings Test: Validity and Reliability Study
Authors: Gökhan Kayili, Ramazan Ari
Abstract:
In this research, it is aimed to be adapted Wally Feelings Test to Turkish children and performed the reliability and validity analysis of the test. The sampling of the research was composed of three to five year-old 699 Turkish preschoolers who are attending official and private nursery school. The schools selected with simple random sampling method by considering different socio economic conditions and different central district in Konya. In order to determine reliability of Wally Feelings Test, internal consistency coefficients (KR-20), split-half reliability and test- retest reliability analysis have been performed. During validation process construct validity, content/scope validity and concurrent/criterion validity were used. When validity and reliability of the test examined, it is seen that Wally Feelings Test is a valid and reliable instrument to evaluate three to five year old Turkish children’s understanding feeling skills.Keywords: reliability, validity, wally feelings test, social sciences
Procedia PDF Downloads 54312067 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 13012066 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks
Procedia PDF Downloads 15712065 Optimization of Reliability Test Plans: Increase Wafer Fabrication Equipments Uptime
Authors: Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta, Ahmed Zeouita
Abstract:
Semiconductor processing chambers tend to operate in controlled but aggressive operating conditions (chemistry, plasma, high temperature etc.) Owing to this, the design of this equipment requires developing robust and reliable hardware and software. Any equipment downtime due to reliability issues can have cost implications both for customers in terms of tool downtime (reduced throughput) and for equipment manufacturers in terms of high warranty costs and customer trust deficit. A thorough reliability assessment of critical parts and a plan for preventive maintenance/replacement schedules need to be done before tool shipment. This helps to save significant warranty costs and tool downtimes in the field. However, designing a proper reliability test plan to accurately demonstrate reliability targets with proper sample size and test duration is quite challenging. This is mainly because components can fail in different failure modes that fit into different Weibull beta value distributions. Without apriori Weibull beta of a failure mode under consideration, it always leads to over/under utilization of resources, which eventually end up in false positives or false negatives estimates. This paper proposes a methodology to design a reliability test plan with optimal model size/duration/both (independent of apriori Weibull beta). This methodology can be used in demonstration tests and can be extended to accelerated life tests to further decrease sample size/test duration.Keywords: reliability, stochastics, preventive maintenance
Procedia PDF Downloads 2312064 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction
Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack
Abstract:
We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization
Procedia PDF Downloads 110