Search results for: spatial time series
21266 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study
Authors: Ghaleb Y. Abbasi, Israa Abu Rumman
Abstract:
This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.Keywords: ARIMA models, sales demand forecasting, time series, R code
Procedia PDF Downloads 38521265 Improving the Performance of Requisition Document Online System for Royal Thai Army by Using Time Series Model
Authors: D. Prangchumpol
Abstract:
This research presents a forecasting method of requisition document demands for Military units by using Exponential Smoothing methods to analyze data. The data used in the forecast is an actual data requisition document of The Adjutant General Department. The results of the forecasting model to forecast the requisition of the document found that Holt–Winters’ trend and seasonality method of α=0.1, β=0, γ=0 is appropriate and matches for requisition of documents. In addition, the researcher has developed a requisition online system to improve the performance of requisition documents of The Adjutant General Department, and also ensuring that the operation can be checked.Keywords: requisition, holt–winters, time series, royal thai army
Procedia PDF Downloads 30821264 Forecasting Amman Stock Market Data Using a Hybrid Method
Authors: Ahmad Awajan, Sadam Al Wadi
Abstract:
In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series
Procedia PDF Downloads 12921263 Factor to Elicit Spatial Presence: Calmness
Authors: Nadia Diyana Mohd Muhaiyuddin, Dayang Rohaya Awang Rambli
Abstract:
The aim of our work is to identify whether user’s calmness can be a factor to elicit user’s spatial presence experience. Hence, a systematic mental model technique called repertory grid was selected to collect data because users can freely give their opinions in this approach. Three image-based virtual reality (IBVR) environments were created to satisfy the requirement of the repertory grid. Different virtual environments were necessary to allow users to compare and give feedback. Result was analyzed by using descriptive analysis through the SPSS software. The result revealed that ‘users feel calm’ is accepted as one of the factors that can elicit spatial presence. Users also highlighted five IBVR characteristics that could elicit spatial presence, namely, calm sound, calm content, calm color, calm story line, and the calm feeling of the user.Keywords: spatial presence, presence, virtual reality, image-based virtual reality, human-computer interaction
Procedia PDF Downloads 28621262 Multi-Scale Green Infrastructure: An Integrated Literature Review
Authors: Panpan Feng
Abstract:
The concept of green infrastructure originated in Europe and the United States. It aims to ensure smart growth of urban and rural ecosystems and achieve sustainable urban and rural ecological, social, and economic development by combining it with gray infrastructure in traditional planning. Based on the literature review of the theoretical origin, value connotation, and measurement methods of green infrastructure, this study summarizes the research content of green infrastructure at different scales from the three spatial levels of region, city, and block and divides it into functional dimensions, spatial dimension, and strategic dimension. The results show that in the functional dimension, from region-city-block, the research on green infrastructure gradually shifts from ecological function to social function. In the spatial dimension, from region-city-block, the research on the spatial form of green infrastructure has shifted from two-dimensional to three-dimensional, and the spatial structure of green infrastructure has shifted from single ecological elements to multiple composite elements. From a strategic perspective, green infrastructure research is more of a spatial planning tool based on land management, environmental livability and ecological psychology, providing certain decision-making support.Keywords: green infrastructure, multi-scale, social and ecological functions, spatial strategic decision-making tools
Procedia PDF Downloads 5921261 Research on Spatial Pattern and Spatial Structure of Human Settlement from the View of Spatial Anthropology – A Case Study of the Settlement in Sizhai Village, City of Zhuji, Zhejiang Province, China
Authors: Ni Zhenyu
Abstract:
A human settlement is defined as the social activities, social relationships and lifestyles generated within a certain territory, which is also relatively independent territorial living space and domain composed of common people. Along with the advancement of technology and the development of society, the idea, presented in traditional research, that human settlements are deemed as substantial organic integrity with strong autonomy, are more often challenged nowadays. Spatial form of human settlements is one of the most outstanding external expressions with its subjectivity and autonomy, nevertheless, the projections of social, economic activities on certain territories are even more significant. What exactly is the relationship between human beings and the spatial form of the settlements where they live in? a question worth thinking over has been raised, that if a new view, a spatial anthropological one , can be constructed to review and respond to spatial form of human settlements based on research theories and methods of cultural anthropology within the profession of architecture. This article interprets how the typical spatial form of human settlements in the basin area of Bac Giang Province is formed under the collective impacts of local social order, land use condition, topographic features, and social contracts. A particular case of the settlement in Sizhai Village, City of Zhuji, Zhejiang Province is chosen to study for research purpose. Spatial form of human settlements are interpreted as a modeled integrity affected corporately by dominant economy, social patterns, key symbol marks and core values, etc.. Spatial form of human settlements, being a structured existence, is a materialized, behavioral, and social space; it can be considered as a place where human beings realize their behaviors and a path on which the continuity of their behaviors are kept, also for social practice a territory where currant social structure and social relationships are maintained, strengthened and rebuilt. This article aims to break the boundary of understanding that spatial form of human settlements is pure physical space, furthermore, endeavors to highlight the autonomy status of human beings, focusing on their relationships with certain territories, their interpersonal relationships, man-earth relationships and the state of existence of human beings, elaborating the deeper connotation behind spatial form of human settlements.Keywords: spatial anthropology, human settlement, spatial pattern, spatial structure
Procedia PDF Downloads 41121260 Comparative Spatial Analysis of a Re-Arranged Hospital Building
Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak
Abstract:
Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.Keywords: architecture, hospital building, space syntax, strengthening
Procedia PDF Downloads 52121259 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles
Authors: Andreas Gohs, Reinhold Kosfeld
Abstract:
This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion
Procedia PDF Downloads 16621258 Analysis of Ecological Footprint of Residents for Urban Spatial Restructuring
Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim
Abstract:
Since the rapid economic development, Korea has recently entered a period of low growth due to population decline and aging. Due to the urbanization around the metropolitan area and the hollowing of local cities, the ecological capacity of a city is decreasing while ecological footprints are increasing, requiring a compact space plan for maintaining urban functions. The purpose of this study is to analyze the relationship between urban spatial structure and residents' ecological footprints for sustainable spatial planning. To do this, we try to analyze the relationship between intra-urban spatial structure, such as net/gross density and service accessibility, and resident ecological footprints of food, housing, transportation, goods and services through survey and structural equation modeling. The results of the study will be useful in establishing an implementation plan for sustainable development goals (SDGs), especially for sustainable cities and communities (SDG 11) and responsible consumption and production (SDG 12) in the future.Keywords: ecological footprint, structural equation modeling, survey, sustainability, urban spatial structure
Procedia PDF Downloads 26521257 Analyzing the Relationship between the Spatial Characteristics of Cultural Structure, Activities, and the Tourism Demand
Authors: Deniz Karagöz
Abstract:
This study is attempt to comprehend the relationship between the spatial characteristics of cultural structure, activities and the tourism demand in Turkey. The analysis divided into four parts. The first part consisted of a cultural structure and cultural activity (CSCA) index provided by principal component analysis. The analysis determined four distinct dimensions, namely, cultural activity/structure, accessing culture, consumption, and cultural management. The exploratory spatial data analysis employed to determine the spatial models of cultural structure and cultural activities in 81 provinces in Turkey. Global Moran I indices is used to ascertain the cultural activities and the structural clusters. Finally, the relationship between the cultural activities/cultural structure and tourism demand was analyzed. The raw/original data of the study official databases. The data on the cultural structure and activities gathered from the Turkish Statistical Institute and the data related to the tourism demand was provided by the Republic of Turkey Ministry of Culture and Tourism.Keywords: cultural activities, cultural structure, spatial characteristics, tourism demand, Turkey
Procedia PDF Downloads 56021256 Rural-Urban Partnership for Balanced Spatial Development in Latvia
Authors: Zane Bulderberga
Abstract:
Spatial dimension in development planning is becoming more topical in 21st century as a result of changes in population structure. Sustainable spatial development focuses on identifying and using territorial advantages to foster the harmonized development of the entire country, reducing negative effects of population concentration, increasing availability and mobility. EU and national development planning documents state polycentrism as main tool for balance spatial development, including investment concentration in growth centres. If mutual cooperation of growth centres as well as urban-rural cooperation is not fostered, then territorial differences can deepen and create unbalanced development. The aim of research: to evaluate the urban-rural interaction, elaborating spatial development scenarios in framework of Latvian regional policy. To perform the research monographic, comparison, abstract-logical method, synthesis and analysis will be used when studying the theoretical aspects of research aiming at collecting the ideas of scientists from different countries, concepts, regulations as well as to create meaningful scientific discussion. Hierarchy analysis process (AHP) will be used to state further scenarios of spatial development in Latvia. Experts from various institutions recognized urban-rural interaction and co-operation as an essential tool for the development. The most important factors for balanced spatial development in Latvia are availability of public transportation and improvement of service availability. Evaluating the three alternative scenarios, it was concluded that the urban-rural partnership will ensure a balanced development in Latvian regions.Keywords: rural-urban interaction, rural-urban cooperation, spatial development, AHP
Procedia PDF Downloads 30821255 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 26821254 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability
Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy
Abstract:
This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality
Procedia PDF Downloads 25621253 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 15221252 The Functions of Spatial Structure in Supporting Socialization in Urban Parks
Authors: Navid Nasrolah Mazandarani, Faezeh Mohammadi Tahrodi, Jr., Norshida Ujang, Richard Jan Pech
Abstract:
Human evolution has designed us to be dependent on social and natural settings, but designed of our modern cities often ignore this fact. It is evident that high-rise buildings dominate most metropolitan city centers. As a result urban parks are very limited and in many cases are not socially responsive to our social needs in these urban ‘jungles’. This paper emphasizes the functions of urban morphology in supporting socialization in Lake Garden, one of the main urban parks in Kuala Lumpur, Malaysia. It discusses two relevant theories; first the concept of users’ experience coined by Kevin Lynch (1960) which states that way-finding is related to the process of forming mental maps of environmental surroundings. Second, the concept of social activity coined by Jan Gehl (1987) which holds that urban public spaces can be more attractive when they provide welcoming places in which people can walk around and spend time. Until recently, research on socio-spatial behavior mainly focused on social ties, place attachment and human well-being; with less focus on the spatial dimension of social behavior. This paper examines the socio-spatial behavior within the spatial structure of the urban park by exploring the relationship between way-finding and social activity. The urban structures defined by the paths and nodes were analyzed as the fundamental topological structure of space to understand their effects on the social engagement pattern. The study uses a photo questionnaire survey to inspect the spatial dimension in relation to the social activities within paths and nodes. To understand the legibility of the park, spatial cognition was evaluated using sketch maps produced by 30 participants who visited the park. The results of the sketch mapping indicated that a spatial image has a strong interrelation with socio-spatial behavior. Moreover, an integrated spatial structure of the park generated integrated use and social activity. It was found that people recognized and remembered the spaces where they engaged in social activities. They could experience the park more thoroughly, when they found their way continuously through an integrated park structure. Therefore, the benefits of both perceptual and social dimensions of planning and design happened simultaneously. The findings can assist urban planners and designers to redevelop urban parks by considering the social quality design that contributes to clear mental images of these places.Keywords: spatial structure, social activities, sketch map, urban park, way-finding
Procedia PDF Downloads 31521251 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric
Authors: Kejal Khatri, Vishnu Narayan Mishra
Abstract:
We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability
Procedia PDF Downloads 41921250 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 36921249 The Impact of Developing Tourism on the Spatial Pattern in Jordan
Authors: Khries Sawsan
Abstract:
the phenomenon of urbanization is considered as one of the most important tourism resources that differ from one country to another and from one region to another in the same country. Our concern in tourism accommodation is explained by the fact that their location is directly related to the movement to tourist sites .Besides, these constructions comport security considered as the most important motivation for tourists in their choice of any destination. Hotels are the most representative expression of tourism. This is due to their physical prominence in the landscape and being the sole urban component totally unique to tourism. This study sheds light on the impact of tourism development on the spatial pattern in Jordan. It describes the linkages between existing tourism development policies and the spatial development patterns that have occurred as a result throughout Jordan, particularly looking at the impact that tourism has had on the physical environment of major tourism destinations. It puts an illustrative plan of the impact of the augmentation of tourism accommodations in Jordan in the past 40 years ago. The findings of this study help us to understand better the operation of Jordan’ dynamic changes in the location An intensive analysis is then applied on a representative case study in three regions: Amman, Petra and Aqaba. The study proceeds from an historical perspective to, show the evolution of the current development patterns an increase of tourism’s impact on spatial, in the presence of factors as political and economic stability, is expected.Keywords: spatial patterns, urbanisation, spatial transformations, tourism planning, Jordan
Procedia PDF Downloads 54821248 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets
Authors: Selin Guney, Andres Riquelme
Abstract:
Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.Keywords: commodity, forecast, fuzzy, Markov
Procedia PDF Downloads 21721247 Residual Power Series Method for System of Volterra Integro-Differential Equations
Authors: Zuhier Altawallbeh
Abstract:
This paper investigates the approximate analytical solutions of general form of Volterra integro-differential equations system by using the residual power series method (for short RPSM). The proposed method produces the solutions in terms of convergent series requires no linearization or small perturbation and reproduces the exact solution when the solution is polynomial. Some examples are given to demonstrate the simplicity and efficiency of the proposed method. Comparisons with the Laplace decomposition algorithm verify that the new method is very effective and convenient for solving system of pantograph equations.Keywords: integro-differential equation, pantograph equations, system of initial value problems, residual power series method
Procedia PDF Downloads 41821246 Urban Energy Demand Modelling: Spatial Analysis Approach
Authors: Hung-Chu Chen, Han Qi, Bauke de Vries
Abstract:
Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics
Procedia PDF Downloads 14821245 Chromosomes Are Present in a Fixed Region on the Equatorial Plate Within the Interphase of Cell Division
Authors: Chunxiao Wu, Dongyun Jiang, Tao Jiang, Luxia Xu, Qian Xu, Meng Zhao, Qin Zhu, Zhigang Guo, Jinlan Pan, Suning Chen
Abstract:
The stability and evolution of human genetics depends on chromosomes (and chromosome-chromosome interactions). We wish to understand the spatial location of chromosomes in dividing cells in order to understand the relationship between chromosome-chromosome interactions and to further investigate the role of chromosomes and their impact on cell biological behavior. In this study, we explored the relative spatial positional relationships of chromosomes [t (9;22) and t (15;17)] in B-ALL cells by using the three-dimensions DNA in situ fluorescent hybridization (3D-FISH) method. The results showed that chromosomes [t (9;22) and t (15;17)] showed relatively stable spatial relationships. The relative stability of the spatial location of chromosomes in dividing cells may be relevant to disease.Keywords: chromosome, human genetics, chromosome territory, 3D-FISH
Procedia PDF Downloads 4621244 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river
Procedia PDF Downloads 28721243 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 34821242 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 36921241 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 8521240 Chaotic Analysis of Acid Rains with Times Series of pH Degree, Nitrate and Sulphate Concentration on Wet Samples
Authors: Aysegul Sener, Gonca Tuncel Memis, Mirac Kamislioglu
Abstract:
Chaos theory is one of the new paradigms of science since the last century. After determining chaos in the weather systems by Edward Lorenz the popularity of the theory was increased. Chaos is observed in many natural systems and studies continue to defect chaos to other natural systems. Acid rain is one of the environmental problems that have negative effects on environment and acid rains values are monitored continuously. In this study, we aim that analyze the chaotic behavior of acid rains in Turkey with the chaotic defecting approaches. The data of pH degree of rain waters, concentration of sulfate and nitrate data of wet rain water samples in the rain collecting stations which are located in different regions of Turkey are provided by Turkish State Meteorology Service. Lyapunov exponents, reconstruction of the phase space, power spectrums are used in this study to determine and predict the chaotic behaviors of acid rains. As a result of the analysis it is found that acid rain time series have positive Lyapunov exponents and wide power spectrums and chaotic behavior is observed in the acid rain time series.Keywords: acid rains, chaos, chaotic analysis, Lypapunov exponents
Procedia PDF Downloads 14521239 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections
Authors: Ravneil Nand
Abstract:
Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse
Procedia PDF Downloads 33521238 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing
Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig
Abstract:
Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.Keywords: empirical mode decomposition (EMD), mode mixing, sifting process, over-sifting
Procedia PDF Downloads 39321237 Overview of Standard Unit System of Shenzhen Land Spatial Planning and Case Analysis
Authors: Ziwei Huang
Abstract:
The standard unit of Shenzhen land spatial planning has the characteristics of vertical conduction, horizontal evaluation, internal balance and supervision of implementation. It mainly assumes the role of geospatial unit, assists in promoting the complex development of the business in Shenzhen and undertakes the management and transmission of upper and lower levels of planning as well as the Urban management functions such as gap analysis of public facilities, planning evaluation and dynamic monitoring of planning information. Combining with the application examples of the analysis of gaps in public facilities in Longgang District, it can be found that the standard unit of land spatial planning in Shenzhen as a small-scale geographic basic unit, has a stronger urban spatial coupling effect. However, the universality of the application of the system is still lacking and it is necessary to propose more scientific and powerful standard unit delineation standards and planning function evaluation indicators to guide the implementation of the system's popularization and application.Keywords: Shenzhen city, land spatial planning, standard unit system, urban delicacy management
Procedia PDF Downloads 128