Search results for: sequential extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2391

Search results for: sequential extraction

2151 Prevalence of Lower Third Molar Impactions and Angulations Among Yemeni Population

Authors: Khawlah Al-Khalidi

Abstract:

Prevalence of lower third molar impactions and angulations among Yemeni population The purpose of this study was to look into the prevalence of lower third molars in a sample of patients from Ibb University Affiliated Hospital, as well as to study and categorise their position by using Pell and Gregory classification, and to look into a possible correlation between their position and the indication for extraction. Materials and methods: This is a retrospective, observational study in which a sample of 200 patients from Ibb University Affiliated Hospital were studied, including patient record validation and orthopantomography performed in screening appointments in people aged 16 to 21. Results and discussion: Males make up 63% of the sample, while people aged 19 to 20 make up 41.2%. Lower third molars were found in 365 of the 365 instances examined, accounting for 91% of the sample under study. According to Pell and Gregory's categorisation, the most common position is IIB, with 37%, followed by IIA with 21%; less common classes are IIIA, IC, and IIIC, with 1%, 3%, and 3%, respectively. It was feasible to determine that 56% of the lower third molars in the sample were recommended for extraction during the screening consultation. Finally, there are differences in third molar location and angulation. There was, however, a link between the available space for third molar eruption and the need for tooth extraction.

Keywords: lower third molar, extraction, Pell and Gregory classification, lower third molar impaction

Procedia PDF Downloads 58
2150 Recycling of Spent Mo-Co Catalyst for the Recovery of Molybdenum Using Cyphos IL 104

Authors: Harshit Mahandra, Rashmi Singh, Bina Gupta

Abstract:

Molybdenum is widely used in thermocouples, anticathode of X-ray tubes and in the production of alloys of steels. Molybdenum compounds are extensively used as a catalyst in petroleum-refining industries for hydrodesulphurization. Activity of the catalysts decreases gradually with time and are dumped as hazardous waste due to contamination with toxic materials during the process. These spent catalysts can serve as a secondary source for metal recovery and help to sort out environmental and economical issues. In present study, extraction and separation of molybdenum from a Mo-Co spent catalyst leach liquor containing 0.870 g L⁻¹ Mo, 0.341 g L⁻¹ Co, 0.422 ×10⁻¹ g L⁻¹ Fe and 0.508 g L⁻¹ Al in 3 mol L⁻¹ HCl has been investigated using solvent extraction technique. The extracted molybdenum has been finally recovered as molybdenum trioxide. Leaching conditions used were- 3 mol L⁻¹ HCl, 90°C temperature, solid to liquid ratio (w/v) of 1.25% and reaction time of 60 minutes. 96.45% molybdenum was leached under these conditions. For the extraction of molybdenum from leach liquor, Cyphos IL 104 [trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate] in toluene was used as an extractant. Around 91% molybdenum was extracted with 0.02 mol L⁻¹ Cyphos IL 104, and 75% of molybdenum was stripped from the loaded organic phase with 2 mol L⁻¹ HNO₃ at A/O=1/1. McCabe Thiele diagrams were drawn to determine the number of stages required for the extraction and stripping of molybdenum. According to McCabe Thiele plots, two stages are required for both extraction and stripping of molybdenum at A/O=1/1 which were also confirmed by countercurrent simulation studies. Around 98% molybdenum was extracted in two countercurrent extraction stages with no co-extraction of cobalt and aluminum. Iron was removed from the loaded organic phase by scrubbing with 0.01 mol L⁻¹ HCl. Quantitative recovery of molybdenum is achieved in three countercurrent stripping stages at A/O=1/1. Trioxide of molybdenum was obtained from strip solution and was characterized by XRD, FE-SEM and EDX techniques. Molybdenum trioxide due to its distinctive electrochromic, thermochromic and photochromic properties is used as a smart material for sensors, lubricants, and Li-ion batteries. Molybdenum trioxide finds application in various processes such as methanol oxidation, metathesis, propane oxidation and in hydrodesulphurization. It can also be used as a precursor for the synthesis of MoS₂ and MoSe₂.

Keywords: Cyphos IL 104, molybdenum, spent Mo-Co catalyst, recovery

Procedia PDF Downloads 207
2149 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 110
2148 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology

Procedia PDF Downloads 383
2147 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 184
2146 Use RP-HPLC To Investigate Factors Influencing Sorghum Protein Extraction

Authors: Khaled Khaladi, Rafika Bibi, Hind Mokrane, Boubekeur Nadjemi

Abstract:

Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop grown in the semi-arid tropics of Africa and Asia due to its drought tolerance. Sorghum grain has protein content varying from 6 to 18%, with an average of 11%, Sorghum proteins can be broadly classified into prolamin and non-prolamin proteins. Kafirins, the major storage proteins, are classified as prolamins, and as such, they contain high levels of proline and glutamine and are soluble in non-polar solvents such as aqueous alcohols. Kafirins account for 77 to 82% of the protein in the endosperm, whereas non-prolamin proteins (namely, albumins, globulins, and glutelins) make up about 30% of the proteins. To optimize the extraction of sorghum proteins, several variables were examined: detergent type and concentration, reducing agent type and concentration, and buffer pH and concentration. Samples were quantified and characterized by RP-HPLC.

Keywords: sorghum, protein extraction, detergent, food science

Procedia PDF Downloads 322
2145 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 452
2144 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation

Procedia PDF Downloads 736
2143 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture

Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk

Abstract:

Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.

Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization

Procedia PDF Downloads 379
2142 Extracting Actions with Improved Part of Speech Tagging for Social Networking Texts

Authors: Yassine Jamoussi, Ameni Youssfi, Henda Ben Ghezala

Abstract:

With the growing interest in social networking, the interaction of social actors evolved to a source of knowledge in which it becomes possible to perform context aware-reasoning. The information extraction from social networking especially Twitter and Facebook is one of the problems in this area. To extract text from social networking, we need several lexical features and large scale word clustering. We attempt to expand existing tokenizer and to develop our own tagger in order to support the incorrect words currently in existence in Facebook and Twitter. Our goal in this work is to benefit from the lexical features developed for Twitter and online conversational text in previous works, and to develop an extraction model for constructing a huge knowledge based on actions

Keywords: social networking, information extraction, part-of-speech tagging, natural language processing

Procedia PDF Downloads 305
2141 Effect of Honey on Rate of Healing of Socket after Tooth Extraction in Rabbits

Authors: Deependra Prasad Sarraf, Ashish Shrestha, Mehul Rajesh Jaisani, Gajendra Prasad Rauniar

Abstract:

Background: Honey is the worlds’ oldest known wound dressing. Its wound healing properties are not fully established till today. Concerns about antibiotic resistance, and a renewed interest in natural remedies have prompted the resurgence in the antimicrobial and wound healing properties of Honey. Evidence from animal studies and some trials has suggested that honey may accelerate wound healing in burns, infected wounds and open wounds. None of these reports have documented the effect of honey on the healing of socket after tooth extraction. Therefore, the present experimental study was planned to evaluate the efficacy of honey on the healing of socket after tooth extraction in rabbits. Materials and Methods: An experimental study was conducted in six New Zealand White rabbits. Extraction of first premolar tooth on both sides of the lower jaw was done under anesthesia produced by Ketamine and Xylazine followed by application of honey on one socket (test group) and normal saline (control group) in the opposite socket. The intervention was continued for two more days. On the 7th day, the biopsy was taken from the extraction site, and histopathological examination was done. Student’s t-test was used for comparison between the groups and differences were considered to be statistically significant at p-value less than 0.05. Results: There was a significant difference between control group and test group in terms of fibroblast proliferation (p = 0.0019) and bony trabeculae formation (p=0.0003). Inflammatory cells were also observed in both groups, and it was not significant (p=1.0). Overlying epithelium was hyperplastic in both the groups. Conclusion: The study showed that local application of honey promoted the rapid healing process particularly by increasing fibroblast proliferation and bony trabeculae.

Keywords: honey, extraction wound, Nepal, healing

Procedia PDF Downloads 294
2140 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 301
2139 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 275
2138 Linear Decoding Applied to V5/MT Neuronal Activity on Past Trials Predicts Current Sensory Choices

Authors: Ben Hadj Hassen Sameh, Gaillard Corentin, Andrew Parker, Kristine Krug

Abstract:

Perceptual decisions about sequences of sensory stimuli often show serial dependence. The behavioural choice on one trial is often affected by the choice on previous trials. We investigated whether the neuronal signals in extrastriate visual area V5/MT on preceding trials might influence choice on the current trial and thereby reveal the neuronal mechanisms of sequential choice effects. We analysed data from 30 single neurons recorded from V5/MT in three Rhesus monkeys making sequential choices about the direction of rotation of a three-dimensional cylinder. We focused exclusively on the responses of neurons that showed significant choice-related firing (mean choice probability =0.73) while the monkey viewed perceptually ambiguous stimuli. Application of a wavelet transform to the choice-related firing revealed differences in the frequency band of neuronal activity that depended on whether the previous trial resulted in a correct choice for an unambiguous stimulus that was in the neuron’s preferred direction (low alpha and high beta and gamma) or non-preferred direction (high alpha and low beta and gamma). To probe this in further detail, we applied a regularized linear decoder to predict the choice for an ambiguous trial by referencing the neuronal activity of the preceding unambiguous trial. Neuronal activity on a previous trial provided a significant prediction of the current choice (61% correc, 95%Cl~52%t), even when limiting analysis to preceding trials that were correct and rewarded. These findings provide a potential neuronal signature of sequential choice effects in the primate visual cortex.

Keywords: perception, decision making, attention, decoding, visual system

Procedia PDF Downloads 141
2137 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition

Procedia PDF Downloads 383
2136 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.

Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW

Procedia PDF Downloads 497
2135 Trends of Seasonal and Annual Rainfall in the South-Central Climatic Zone of Bangladesh Using Mann-Kendall Trend Test

Authors: M. T. Islam, S. H. Shakif, R. Hasan, S. H. Kobi

Abstract:

Investigation of rainfall trends is crucial considering climate change, food security, and the economy of a particular region. This research aims to study seasonal and annual precipitation trends and their abrupt changes over time in the south-central climatic zone of Bangladesh using monthly time series data of 50 years (1970-2019). A trend-free pre-whitening method has been employed to make necessary adjustments for autocorrelations in the rainfall data. Trends in rainfall and their intensity have been observed using the non-parametric Mann-Kendall test and Theil-Sen estimator. Significant changes and fluctuation points in the data series have been detected using the sequential Mann-Kendall test at the 95% confidence limit. The study findings show that most of the rainfall stations in the study area have a decreasing precipitation pattern throughout all seasons. The maximum decline in the rainfall intensity has been found for the Tangail station (-8.24 mm/year) during monsoon. Madaripur and Chandpur stations have shown slight positive trends in post-monsoon rainfall. In terms of annual precipitation, a negative rainfall pattern has been identified in each station, with a maximum decrement (-) of 14.48 mm/year at Chandpur. However, all the trends are statistically non-significant within the 95% confidence interval, and their monotonic association with time ranges from very weak to weak. From the sequential Mann-Kendall test, the year of changing points for annual and seasonal downward precipitation trends occur mostly after the 90s for Dhaka and Barishal stations. For Chandpur, the fluctuation points arrive after the mid-70s in most cases.

Keywords: trend analysis, Mann-Kendall test, Theil-Sen estimator, sequential Mann-Kendall test, rainfall trend

Procedia PDF Downloads 81
2134 Navigating the Case-Based Learning Multimodal Learning Environment: A Qualitative Study Across the First-Year Medical Students

Authors: Bhavani Veasuvalingam

Abstract:

Case-based learning (CBL) is a popular instructional method aimed to bridge theory to clinical practice. This study aims to explore CBL mixed modality curriculum in influencing students’ learning styles and strategies that support learning. An explanatory sequential mixed method study was employed with initial phase, 44-itemed Felderman’s Index of Learning Style (ILS) questionnaire employed across year one medical students (n=142) using convenience sampling to describe the preferred learning styles. The qualitative phase utilised three focus group discussions (FGD) to explore in depth on the multimodal learning style exhibited by the students. Most students preferred combination of learning stylesthat is reflective, sensing, visual and sequential i.e.: RSVISeq style (24.64%) from the ILS analysis. The frequency of learning preference from processing to understanding were well balanced, with sequential-global domain (66.2%); sensing-intuitive (59.86%), active- reflective (57%), and visual-verbal (51.41%). The qualitative data reported three major themes, namely Theme 1: CBL mixed modalities navigates learners’ learning style; Theme 2: Multimodal learners active learning strategies supports learning. Theme 3: CBL modalities facilitating theory into clinical knowledge. Both quantitative and qualitative study strongly reports the multimodal learning style of the year one medical students. Medical students utilise multimodal learning styles to attain the clinical knowledge when learning with CBL mixed modalities. Educators’ awareness of the multimodal learning style is crucial in delivering the CBL mixed modalities effectively, considering strategic pedagogical support students to engage and learn CBL in bridging the theoretical knowledge into clinical practice.

Keywords: case-based learning, learnign style, medical students, learning

Procedia PDF Downloads 95
2133 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 114
2132 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach

Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal

Abstract:

Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.

Keywords: e-learning, cluster, personalization, sequence, pattern

Procedia PDF Downloads 432
2131 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora

Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai

Abstract:

Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1

Keywords: Ruellia bignoniiflora, Ruellia linearibracteolata, Ruellia prostrata, Saponins

Procedia PDF Downloads 181
2130 Evaluation of Pretreatment and Bioactive Compounds Recovery from Chlorella vulgaris

Authors: Marina Stramarkou, Sofia Papadaki, Konstantina Kyriakopoulou, Magdalini Krokida

Abstract:

Nowadays, microalgae represent the diverse branch of microorganism that is used not only in fish farming, but also in food, cosmetics, pharmaceuticals and biofuel production as they can produce a wide range of unique functional ingredients. In the present work, a remarkable microalga Chlorella vulgaris (CV) was selected as a raw material for the recovery of multifunctional extracts. First of all, the drying of raw biomass was examined with freeze-drying showing the best behavior. Ultrasonic-assisted extraction (UAE) using different solvents was applied under the specific optimized conditions. In case of raw biomass, ethanol was the suitable solvent, whereas on dried samples water performed better. The total carotenoid, β-carotene, chlorophyll and protein content in the raw materials, extracts and extraction residues was determined using UV-Vis spectrometry. The microalgae biomass and the extracts were evaluated regarding their antiradical activity using the DPPH method.

Keywords: antioxidant activity, pigments, proteins, ultrasound assisted extraction

Procedia PDF Downloads 334
2129 Empowering Leadership and Constructive Voice: A Sequential Mediation Analysis

Authors: Umamaheswara Rao Jada, Susmita Mukhopadhyay

Abstract:

In the present highly complex, dynamic and interdependent organizational environment, employees' ideas, opinions and suggestions which is technically referred to as ‘constructive employee voice’ is increasingly being recognized and valued. Literature has consistently demonstrated the relevance of leadership in employee voicing behavior, however the new form of leadership, ‘empowering leadership’ has not been given much attention. The study, therefore, devotes itself to the effort to explore the impact of this new form of leadership on employee voice behavior and the interplay with leader member exchange (LMX) and psychological safety as mediators in the same. The study utilizes structural equation modeling for analyzing the data collected from 310 Indian service industry employees through the questionnaire developed for the study. The findings of the study demonstrate the significant impact of empowering form of leadership on employees’ constructive voice behavior. Additionally, supporting results were observed for the mediating impact of leader member exchange (LMX) and psychological safety between empowering leadership and employees’ constructive voice behavior. The results of this study provide insights into the intervening mechanisms by linking leaders’ empowering behavior with employees’ constructive voice, while also highlighting the potential importance of LMX relationship in organizations and psychological safety in the context of constructive voice behavior. The study brings forth the relevance of the new form of leadership, ‘empowering leadership’ for fostering the better exchange of ideas, opinions, and suggestions between leaders and followers which tend to benefit the organization, providing empirical evidence of the sequential mediation of LMX and psychological safety. The piece of work is assumed to benefit the leaders in organizations by providing them the basis for adopting empowering form of leadership in light of results displayed.

Keywords: constructive voice, empowering leadership, leader member exchange (LMX), psychological safety, sequential mediation, structural equation modeling

Procedia PDF Downloads 305
2128 Heart and Plasma LDH and CK in Response to Intensive Treadmill Running and Aqueous Extraction of Red Crataegus pentagyna in Male Rats

Authors: A. Abdi, A. Barari, A. Hojatollah Nikbakht, Khosro Ebrahim

Abstract:

Aim: The purpose of the current study was to investigate the effect of a high intensity treadmill running training (8 weeks) with or without aqueous extraction of Crataegus pentagyna on heart and plasma LDH and CK. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were used. Animals were randomly assigned into training (n = 16) and control (n = 16) groups and further divided into saline-control (SC, n = 8), saline-training (ST, n = 8), red Crataegus pentagyna extraction -control (CPEC, n = 8), and red Crataegus pentagyna extraction -training (CPET, n = 8) groups. Training groups have performed a high-intensity running program 34 m/min on 0% grade, 60 min/day, 5 days/week) on a motor-driven treadmill for 8 weeks. Animals were fed orally with Crataegus extraction and saline solution (500mg/kg body weight/or 10ml/kg body weight) for last six weeks. Seventy- two hours after the last training session, rats were sacrificed; plasma and heart were excised and immediately frozen in liquid nitrogen. LDH and CK levels were measured by colorimetric method. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: Result showed that consumption crataegus lowers LDH and CK in heart and plasma. Also the heart LDH and CK were lower in the CPET compared to the ST, while plasma LDH and CK in CPET was higher than the ST. The results of ANOVA showed that the due high-intensity exercise and consumption crataegus, there are significant differences between levels of hearth LDH (P < 0/001), plasma (P < 0/006) and hearth (P < 0/001) CK. Conclusion: It appears that high-intensity exercise led to increased tissue damage and inflammatory factors in plasma. In other hand, consumption aqueous extraction of Red Crataegus maybe inhibits these factors and prevents muscle and heart damage.

Keywords: LDH, CK, crataegus, intensity

Procedia PDF Downloads 438
2127 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models

Authors: Nada Slimane, Foued Theljani, Faouzi Bouani

Abstract:

The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.

Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression

Procedia PDF Downloads 184
2126 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 473
2125 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation

Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes

Abstract:

The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.

Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization

Procedia PDF Downloads 315
2124 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 157
2123 Pollution Assessment and Potential Ecological Risk of Some Traces Metals in the Surface Sediments of the Gulf of Tunis, North Tunisia

Authors: Haïfa Ben Mna, Ayed Added

Abstract:

To evaluate the trace metals contamination status in the Gulf of Tunis, forty one sediment samples were analyzed using different approaches. According to certain contamination and ecological risk indices (Contamination Factor, Geoaccumulation index and Ecological risk index), Hg has the highest contamination level while pollution by Ni, Pb, Cd and Cr was absent. The highest concentrations of trace metals were found in sediments collected from the offshore and coastal areas located opposite the main exchange points with the gulf particularly, the Mejerda and Meliane Rivers, the Khalij Channel, Ghar El Melh and El Malah lagoons, Tunis Lake and Sebkhat Ariana. However, further ecological indices (Potential ecological risk index, Toxic unit and Mean effect-range median quotient) and comparison with sediment quality guidelines suggest that in addition to Mercury, Cr, Pb and Ni concentrations are detrimental to biota in both the offshore and areas near to the exchange points with the gulf. Moreover, in these areas the results from sequential extraction and individual contamination factor calculation pointed to the mobility and bioavailability of Cr, Pb and Ni.

Keywords: sediment, trace metals, contamination assessment, ecological risk, Tunis gulf

Procedia PDF Downloads 84
2122 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 170