Search results for: propagation delay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1511

Search results for: propagation delay

1271 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 288
1270 Characteristic Study on Conventional and Soliton Based Transmission System

Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian

Abstract:

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Keywords: dispersion length, retrun-to-zero (rz), soliton, soliton period, q-factor

Procedia PDF Downloads 321
1269 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 172
1268 Tracking Patient Pathway for Assessing Public Health and Financial Burden to Community for Pulmonary Tuberculosis: Pointer from Central India

Authors: Ashish Sinha, Pushpend Agrawal

Abstract:

Background: Patients with undiagnosed pulmonary TB predominantly act as reservoirs for its transmission through 10-15 secondary infections in the next 1-5 Yrs. Delays in the diagnosis and treatment may worsen the disease with increase the risk of death. Factors responsible for such delays by tracking patient pathways to treatment may help in planning better interventions. The provision of ‘free diagnosis and treatment’ forms the cornerstone of the National Tuberculosis Elimination Programme (NTEP). OOPE is defined as the money spent by the patient during TB care other than public health facilities. Free TB care at all health facilities could reduce out-of-pocket expenses to the minimum possible levels. Material and Methods: This cross-sectional study was conducted among randomly selected 252 TB patients from Nov – Oct 2022 by taking in-depth interviews following informed verbal consent. We documented their journey from initial symptoms until they reached the public health facility, along with their ‘out-of-pocket expenditure’ (OOPE) pertaining to TB care. Results: Total treatment delay was 91±72 days on average (median: 77days, IQR: 45-104 days), while the isolated patient delay was 31±45 days (median: 15 days, IQR: 0 days to 43 days); diagnostic delay; 57±60 days (median: 42days, IQR 14-78 days), treatment delay 19 ± 18 days (median: 15days, IQR: 11-19 days). A patient delay (> 30 days) was significantly associated with ignorance about classic symptoms of pulmonary TB, adoption of self-medication, illiteracy, and middle and lower social class. Diagnostic delay was significantly higher among those who contacted private health facilities, were unaware of signs and symptoms, had >2 consultations, and not getting an appropriate referral for TB care. Most (97%) of the study participants interviewed claimed to have incurred some expenditure.Median total expenses were 6155(IQR: 2625-15175) rupees. More than half 141 (56%) of the study participants had expenses >5000 rupees. Median transport expenses were 525(IQR: 200-1012) rupees; Median consultation expenses were 700(IQR: 200-1600) rupees; Median investigation expenses were 1000(IQR: 0-3025) rupees and the Median medicine expenses were 3350(IQR: 1300-7525).OOPE for consultation, investigation, and medicine was observed to be significantly higher among patients who ignored classical signs& symptoms of TB, repeated visits to private health facilities, and due to self-medication practices. Transport expenses and delays in seeking care at facilities were observed to have an upward trend with OOP Expenses (r =1). Conclusion: Delay in TB care due to low awareness about signs and symptoms of TB and poor seeking care, lack of proper consultation, and appropriate referrals reported by the study subjects indicate the areas which need proper attention by the program managers. Despite a centrally sponsored programme, the financial burden on TB patients is still in the unacceptable range. OOPE could be reduced as low as possible by addressing the responsible factors linked to it.

Keywords: patient pathway, delay, pulmonary tuberculosis, out of pocket expenses

Procedia PDF Downloads 39
1267 A Study on Approximate Controllability of Impulsive Integrodifferential Systems with Non Local Conditions

Authors: Anandhi Santhosh

Abstract:

In order to describe various real-world problems in physical and engineering sciences subject to abrupt changes at certain instants during the evolution process, impulsive differential equations has been used to describe the system model. In this article, the problem of approximate controllability for nonlinear impulsive integrodifferential equations with state-dependent delay is investigated. We study the approximate controllability for nonlinear impulsive integrodifferential system under the assumption that the corresponding linear control system is approximately controllable. Using methods of functional analysis and semigroup theory, sufficient conditions are formulated and proved. Finally, an example is provided to illustrate the proposed theory.

Keywords: approximate controllability, impulsive differential system, fixed point theorem, state-dependent delay

Procedia PDF Downloads 360
1266 Efficient DCT Architectures

Authors: Mr. P. Suryaprasad, R. Lalitha

Abstract:

This paper presents an efficient area and delay architectures for the implementation of one dimensional and two dimensional discrete cosine transform (DCT). These are supported to different lengths (4, 8, 16, and 32). DCT blocks are used in the different video coding standards for the image compression. The 2D- DCT calculation is made using the 2D-DCT separability property, such that the whole architecture is divided into two 1D-DCT calculations by using a transpose buffer. Based on the existing 1D-DCT architecture two different types of 2D-DCT architectures, folded and parallel types are implemented. Both of these two structures use the same transpose buffer. Proposed transpose buffer occupies less area and high speed than existing transpose buffer. Hence the area, low power and delay of both the 2D-DCT architectures are reduced.

Keywords: transposition buffer, video compression, discrete cosine transform, high efficiency video coding, two dimensional picture

Procedia PDF Downloads 496
1265 Building Information Models Utilization for Design Improvement of Infrastructure

Authors: Keisuke Fujioka, Yuta Itoh, Masaru Minagawa, Shunji Kusayanagi

Abstract:

In this study, building information models of the underground temporary structures and adjacent embedded pipes were constructed to show the importance of the information on underground pipes adjacent to the structures to enhance the productivity of execution of construction. Next, the bar chart used in actual construction process were employed to make the Gantt chart, and the critical pass analysis was carried out to show that accurate information on the arrangement of underground existing pipes can be used for the enhancement of the productivity of the construction of underground structures. In the analyzed project, significant construction delay was not caused by unforeseeable existence of underground pipes by the management ability of the construction manager. However, in many cases of construction executions in the developing countries, the existence of unforeseeable embedded pipes often causes substantial delay of construction. Design change based on uncertainty on the position information of embedded pipe can be also important risk for contractors in domestic construction. So CPM analyses were performed by a project-management-software to the situation that influence of the tasks causing construction delay was assumed more significant. Through the analyses, the efficiency of information management on underground pipes and BIM analysis in the design stage for workability improvement was indirectly confirmed.

Keywords: building-information modelling, construction information modelling, design improvement, infrastructure

Procedia PDF Downloads 279
1264 Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses

Authors: Muslim Malik, Avadhesh Kumar

Abstract:

A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.

Keywords: Banach fixed point theorem, non-instantaneous impulses, strongly continuous cosine family, total controllability

Procedia PDF Downloads 274
1263 Tunable in Phase, out of Phase and T/4 Square-Wave Pulses in Delay-Coupled Optoelectronic Oscillators

Authors: Jade Martínez-Llinàs, Pere Colet

Abstract:

By exploring the possible dynamical regimes in a prototypical model for mutually delay-coupled OEOs, here it is shown that two mutually coupled non-identical OEOs, besides in- and out-of-phase square-waves, can generate stable square-wave pulses synchronized at a quarter of the period (T/4) in a broad parameter region. The key point to obtain T/4 solutions is that the two OEO operate with mixed feedback, namely with negative feedback in one and positive in the other. Furthermore, the coexistence of multiple solutions provides a large degree of flexibility for tuning the frequency in the GHz range without changing any parameter. As a result the two coupled OEOs system is good candidate to be implemented for information encoding as a high-capacity memory device.

Keywords: nonlinear optics, optoelectronic oscillators, square waves, synchronization

Procedia PDF Downloads 345
1262 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: fire dynamics, flame propagation, locomotive fire, soot flow pattern, non-air-conditioned coaches

Procedia PDF Downloads 274
1261 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 96
1260 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium

Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault

Abstract:

Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.

Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements

Procedia PDF Downloads 238
1259 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: crack, FRP, shear, strengthening

Procedia PDF Downloads 526
1258 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput

Procedia PDF Downloads 416
1257 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 230
1256 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 159
1255 On the Equalization of Nonminimum Phase Electroacoustic Systems Using Digital Inverse Filters

Authors: Avelino Marques, Diamantino Freitas

Abstract:

Some important electroacoustic systems, like loudspeaker systems, exhibit a nonminimum phase behavior that poses considerable effort when applying advanced digital signal processing techniques, such as linear equalization. In this paper, the position and the number of zeros and poles of the inverse filter, FIR type or IIR type, designed using time domain techniques, are studied, compared and related to the nonminimum phase zeros of system to be equalized. Conclusions about the impact of the position of the system non-minimum phase zeros, on the length/order of the inverse filter and on the delay of the equalized system are outlined as a guide to previously decide which type of filter will be more adequate.

Keywords: loudspeaker systems, nonminimum phase system, FIR and IIR filter, delay

Procedia PDF Downloads 46
1254 Stochastic Age-Structured Population Models

Authors: Arcady Ponosov

Abstract:

Many well-known age-structured population models are derived from the celebrated McKendrick-von Foerster equation (MFE), also called the biological conservation law. A similar technique is suggested for the stochastically perturbed MFE. This technique is shown to produce stochastic versions of the deterministic population models, which appear to be very different from those one can construct by simply appending additive stochasticity to deterministic equations. In particular, it is shown that stochastic Nicholson’s blowflies model should contain both additive and multiplicative stochastic noises. The suggested transformation technique is similar to that used in the deterministic case. The difference is hidden in the formulas for the exact solutions of the simplified boundary value problem for the stochastically perturbed MFE. The analysis is also based on the theory of stochastic delay differential equations.

Keywords: boundary value problems, population models, stochastic delay differential equations, stochastic partial differential equation

Procedia PDF Downloads 221
1253 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor

Procedia PDF Downloads 405
1252 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 383
1251 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 150
1250 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System

Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray

Abstract:

The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.

Keywords: back-propagation algorithm, load instability, neural network, power distribution system

Procedia PDF Downloads 407
1249 Evaluation of Impact on Traffic Conditions Due to Electronic Toll Collection System Design in Thailand

Authors: Kankrong Suangka

Abstract:

This research explored behaviors of toll way users that impact their decision to use the Electronic Toll Collection System (ETC). It also went on to explore and evaluated the efficiency of toll plaza in terms of number of ETC booths in toll plaza and its lane location. The two main parameters selected for the scenarios analyzed were (1) the varying ration of ETC enabled users (2) the varying locations of the dedicated ETC lane. There were a total of 42 scenarios analyzed. Researched data indicated that in A.D.2013, the percentage of ETC user from the total toll user is 22%. It was found that the delay at the payment booth was reduced by increasing the ETC booth by 1 more lane under the condition that the volume of ETC users passing through the plaza less than 1,200 vehicles/hour. Meanwhile, increasing the ETC lanes by 2 lanes can accommodate an increased traffic volume to around 1,200 to 1,800 vehicles/hour. Other than that, in terms of the location of ETC lane, it was found that if for one ETC lane-plazas, installing the ETC lane at the far right are the best alternative. For toll plazas with 2 ETC lanes, the best layout is to have 1 lane in the middle and 1 lane at the far right. This layout shows the least delay when compared to other layouts. Furthermore, the results from this research showed that micro-simulator traffic models have potential for further applications and use in designing toll plaza lanes. Other than that, the results can also be used to analyze the system of the nearby area with similar traffic volume and can be used for further design improvements.

Keywords: the electronic toll collection system, average queuing delay, toll plaza configuration, bioinformatics, biomedicine

Procedia PDF Downloads 215
1248 Challenges in Early Diagnosis of Enlarged Vestibular Aqueduct (EVA) in Pediatric Population: A Single Case Report

Authors: Asha Manoharan, Sooraj A. O, Anju K. G

Abstract:

Enlarged vestibular aqueduct (EVA) refers to the presence of congenital sensorineural hearing loss with an enlarged vestibular aqueduct. The Audiological symptoms of EVA are fluctuating and progressive in nature and the diagnosis of EVAS can be confirmed only with radiological evaluation. Hence it is difficult to differentiate EVA from conditions like Meniere’s disease, semi-circular dehiscence, etc based on audiological findings alone. EVA in adults is easy to identify due to distinct vestibular symptoms. In children, EVA can remain either unidentified or misdiagnosed until the vestibular symptoms are evident. Motor developmental delay, especially the ones involving a change of body alignment, has been reported in the pediatric population with EVA. So, it should be made mandatory to recommend radiological evaluation in young children with fluctuating hearing loss reporting with motor developmental delay. This single case study of a baby with Enlarged Vestibular Aqueduct (EVA) primarily aimed to address the following: a) Challenges while diagnosing young patients with EVA and fluctuating hearing loss, b) Importance of radiological evaluation in audiological diagnosis in the pediatric population, c) Need for regular monitoring of hearing, hearing aid performance, and cochlear implant mapping closely for potential fluctuations in such populations, d) Importance of reviewing developmental, language milestones in very young children with fluctuating hearing loss.

Keywords: enlarged vestibular aqueduct (EVA), motor delay, radiological evaluation, fluctuating hearing loss, cochlear implant

Procedia PDF Downloads 135
1247 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 51
1246 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material

Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel

Abstract:

In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.

Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient

Procedia PDF Downloads 397
1245 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 95
1244 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis

Authors: Jamal Takhchi

Abstract:

The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.

Keywords: structural intensity, NVH, body in white, irrotatational intensity

Procedia PDF Downloads 132
1243 Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations

Authors: A. Azari, S. S. K. Seyyedi

Abstract:

One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided.

Keywords: molecular, noise, diffusion, channel

Procedia PDF Downloads 255
1242 Micro-Texture Effect on Fracture Location in Carbon Steel during Forming

Authors: Sarra Khelifi, Youcef Guerabli, Ahcene Boumaiza

Abstract:

Advances in techniques for measuring individual crystallographic orientations have made it possible to investigate the role of local crystallography during the plastic deformation of materials. In this study, the change in crystallographic orientation distribution during deformation by deep drawing in carbon steel has been investigated in order to understand their role in propagation and arrest of crack. The results show that the change of grain orientation from initial recrystallization texture components of {111}<112> to deformation orientation {111}<110> incites the initiation and propagation of cracks in the region of {111}<112> small grains. Moreover, the misorientation profile and local orientation are analyzed in detail to discuss the change from {111}<112> to {111}<110>. The deformation of the grain with {111}<110> orientation is discussed in terms of stops of the crack in carbon steel during drawing. The SEM-EBSD technique was used to reveal the change of orientation; XRD was performed for the characterization of the global evolution of texture for deformed samples.

Keywords: fracture, heterogeneity, misorientation profile, stored energy

Procedia PDF Downloads 161