Search results for: polynomial adjustments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 470

Search results for: polynomial adjustments

230 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 133
229 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
228 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil

Procedia PDF Downloads 283
227 An Exploration of First Year Bachelor of Education Degree Students’ Learning Preferences in Academic Literacy in a Private Higher Education Institution: A Case for the Blended Learning Approach

Authors: K. Kannapathi-Naidoo

Abstract:

The higher education landscape has undergone changes in the past decade, with concepts such as blended learning, online learning, and hybrid models appearing more frequently in research and practice. The year 2020 marked a mass migration from face-to-face learning and more traditional forms of education to online learning in higher education institutions across the globe due to the Covid-19 pandemic. As a result, contact learning students and lecturing staff alike were thrust into the world of online learning at an unprecedented pace. Traditional modes of learning had to be amended, and pedagogical strategies required adjustments. This study was located within a compulsory first-year academic literacy module in a higher education institution. The study aimed to explore students’ learning preferences between online, face-face, and blended learning within the context of academic literacy. Data was collected through online qualitative questionnaires administered to 150 first-year students, which were then analysed thematically. The findings of the study revealed that 48.5% of the participants preferred a blended learning approach to academic literacy. The main themes that emerged in support of their preference were best of both worlds, flexibility, productivity, and lecturer accessibility. As a result, this paper advocates for the blended learning approach for academic literacy skills-based modules.

Keywords: academic literacy, blended learning, online learning, student learning preferences

Procedia PDF Downloads 75
226 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters

Authors: Nina Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model

Procedia PDF Downloads 155
225 Three Tier Indoor Localization System for Digital Forensics

Authors: Dennis L. Owuor, Okuthe P. Kogeda, Johnson I. Agbinya

Abstract:

Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices.

Keywords: indoor localization, digital forensics, fingerprinting, tracking and cloud

Procedia PDF Downloads 339
224 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 129
223 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 62
222 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

Authors: Luen Chow Chan

Abstract:

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Keywords: bike frame sizes, cadence rate, pedaling power, seat height

Procedia PDF Downloads 120
221 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy

Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi

Abstract:

Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.

Keywords: maritime transport, economy, GDP, regression, port

Procedia PDF Downloads 155
220 Relations between Psychological Adjustment and Perceived Parental, Teacher and Best Friend Acceptance among Bangladeshi Adolescents

Authors: Tariqul Islam, Shaheen Mollah

Abstract:

The study's main objective is to assess the relationship between psychological adjustment and parental acceptance-rejection, teacher acceptance-rejection, and best friend acceptance-rejection among secondary school students. This study was conducted on a sample of 300 (6th through 10th-grade students) recruited from over ten schools in Dhaka. While the schools were selected purposively, the respondents within each school were selected conveniently. The collected data were analyzed using Pearson product-moment correlation, hierarchical regression, and simultaneous regression analysis. The results showed that psychological adjustment is positively correlated with paternal, maternal, teacher, and best friend acceptance. The paternal acceptance was significantly connected with maternal acceptance. The teacher and best friend acceptance are correlated substantially with paternal and maternal acceptance. The hierarchical multiple regressions indicated that maternal, paternal, teacher, and best friend acceptance-rejection contributed significantly to students' psychological adjustment. The results revealed substantial independent contributions of maternal, paternal, teacher, and best friend acceptance on the students' psychological adjustment. The simultaneous regression analysis indicates that the maternal and best friend acceptances (but not paternal acceptance) were significant predictors of psychological adjustments. It showed that 41.7% variability in psychological adjustment could be explained by paternal, maternal, and best friend acceptance. The findings of the present study are exciting. They may contribute to developing insight in parents and best friends for behaving properly with their offspring and friend, respectively, for better psychological adjustment.

Keywords: adjustment, parenting, rejection, acceptance

Procedia PDF Downloads 146
219 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 251
218 Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage

Authors: Ale M. O., Manuwa S. I., Olukunle O. J., Ewetumo T.

Abstract:

Five varying speeds of 1.5, 1.8, 2.1, 2.3, and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under the pneumatic wheel and rigid wheel usage on a well prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught, in which draught ranging between 24.91 and 744.44N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments, with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with less value of draught requires less energy required for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels.

Keywords: Cassava planter, planting, forward speed, draught, wheel type

Procedia PDF Downloads 97
217 Nurses' Knowledge and Attitudes toward the Use of Physical Restraints

Authors: Fatema Salman, Ridha Hammam, Fatima Khairallah, Fatima Aradi, Nafeesa Abdulla, Mohammed Alsafar

Abstract:

Purpose: This study aims at measuring the extent of nurses’ knowledge and attitudes toward the use of physical restraints in different hospital wards at Salmaniya Medical Complex (SMC). Background: The habitual use of physical restraint is a widespread practice among nurses working in the clinical settings. Restraints inflict many deleterious consequences on patients physically and psychologically which in turn increases their morbidity and mortality risk and jeopardizes care quality. Nurses’ knowledge and attitudes toward physical restraints are crucial determinants of the persistence of this practice. Literature review: the evidence of lack of knowledge among nurses regarding the use of physical restraints is overwhelming in various clinical settings, especially in two main areas which are the negative consequences and the available alternatives to physical restraints. Studies explored nurses’ attitudes toward physical restraints yielded inconsistent findings. Equally comparable, some studies found that nurses hold positive attitudes toward the use of physical restraints while some others reported just the opposite. Methods: Self-administered knowledge and attitudes scales to 106 nurses working in the SMC. Findings: nurses hold the moderate level of knowledge about restraints (M=58%) with weak negative attitudes (M = -20%) toward using it. Significant moderately-strong negative correlation (r= -0.57, r2= 0.32, p= 0.000) was uncovered between nurses knowledge and their attitudes which provided an empirical explanation of this phenomenon (use of physical restraints). Recommendations: Induction of awareness program that especially focuses on the negative consequences and encourages the use of alternatives is an evident need. This effort necessarily should be adjoined with policy and procedure adjustments.

Keywords: attitudes, knowledge, nurses, restraints

Procedia PDF Downloads 318
216 Artificial Intelligence in Vietnamese Higher Education: Benefits, Challenges and Ethics

Authors: Duong Van Thanh

Abstract:

Artificial Intelligence (AI) has been recently a new trend in Higher Education systems globally as well as in the Vietnamese Higher Education. This study explores the benefits and challenges in applications of AI in 02 selected universities, ie. Vietnam National Universities in Hanoi Capital and the University of Economics in Ho Chi Minh City. Particularly, this paper focuses on how the ethics of Artificial Intelligence have been addressed among faculty members at these two universities. The AI ethical issues include the access and inclusion, privacy and security, transparency and accountability. AI-powered educational technology has the potential to improve access and inclusion for students with disabilities or other learning needs. However, there is a risk that AI-based systems may not be accessible to all students and may even exacerbate existing inequalities. AI applications can be opaque and difficult to understand, making it challenging to hold them accountable for their decisions and actions. It is important to consider the benefits that adopting AI-systems bring to the institutions, teaching, and learning. And it is equally important to recognize the drawbacks of using AI in education and to take the necessary steps to mitigate any negative impact. The results of this study present a critical concern in higher education in Vietnam, where AI systems may be used to make important decisions about students’ learning and academic progress. The authors of this study attempt to make some recommendation that the AI-system in higher education system is frequently checked by a human in charge to verify that everything is working as it should or if the system needs some retraining or adjustments.

Keywords: artificial intelligence, ethics, challenges, vietnam

Procedia PDF Downloads 130
215 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning

Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara

Abstract:

Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.

Keywords: sheet metal forming, reliability, localized thinning, parametric simulation

Procedia PDF Downloads 423
214 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial

Procedia PDF Downloads 146
213 Moving beyond the Gender Pay Gap: An Investigation of Pension Gender Inequalities across European Counties

Authors: Enva Doda

Abstract:

Recent statistical analyses within the European Union (EU) underscore the enduring significance of the Gender Pay Gap in amplifying the Gender Pension Gap, a phenomenon resisting proportional reduction over time. This study meticulously calculates the Pension Gap, scrutinizing contributing variables within diverse pension systems. Furthermore, it investigates whether the "unexplained" segment of the Gender Gap correlates with political institutions, economic systems, historical events, or discrimination, utilizing quantitative methods and the Blinder-Oaxaca Decomposition Method to pinpoint potential discriminatory factors. The descriptive analysis reveals a conspicuous Gender Pension Gap across European nations, displaying notable variation. While an overall reduction in the Gender Gap is observed, the degree of improvement varies among countries. Subsequent analyses will delve into the specific reasons or variables influencing distinct Gender Gap percentages, forming the basis for nuanced policy recommendations. This comprehensive research enriches the ongoing discourse on gender equality and economic equity. By focusing on the root causes of the Pension Gap, the study has the potential to instigate policy adjustments, urging policymakers to reassess systemic structures and contribute to informed decision-making. Emphasizing gender equality as essential for a flourishing and resilient economy, the research aspires to drive positive change on academic and policy fronts.

Keywords: blinder Oaxaca decomposition method, discrimination, gender pension gap, quantitative methods, unexplained gender gap

Procedia PDF Downloads 45
212 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan

Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman

Abstract:

The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude of learning and educational environment of student’s community. Social Media platforms have become a source of collaboration with one another throughout the globe making it a small world. This study performs focalized investigation of the adverse and constructive factors that have a strong impact not only on the psychological adjustments but also on the academic performance of peers. This study is a quantitative research adopting random sampling method in which the participants were the students of university. Researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill the data on Lickert Scale. The participants are from the age group of 18-24 years. Study applies user and gratification theory in order to examine behavior of students practicing social media in their academic and personal life. Findings of the study reveal that the use of social media platforms in Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by the means of seminars, workshops and by media itself to overcome the negative impacts of social media leading towards sustainable education in Pakistan.

Keywords: social media, positive impact, negative impact, learning behaviour

Procedia PDF Downloads 62
211 An Extended Basic Period and Power-of-Two Policy for Economic Lot-Size Batch-Shipment Scheduling Problem

Authors: Wen-Tsung Ho, Ku-Kuang Chang, Hsin-Yuan Chang

Abstract:

In this study, we consider an economic lot-size batch-shipment scheduling problem (ELBSP) with extended basic period (EBP) and power-of-two (PoT) policies. In this problem, the supplier using a single facility to manufacture multiple products and equally sized batches are then delivered by the supplier to buyers over an infinite planning horizon. Further, the extended basic period (EBP) and power-of-two (PoT) policy are utilized. Relaxing the production schedule converts the ELBSP to an economic lot-size batch-shipment problem (ELBP) with EBP and PoT policies, and a nonlinear integer programming model of the ELBP is constructed. Using the replenishment cycle division and recursive tightening methods, optimal solutions are then solved separately for each product. The sum of these optimal solutions is the lower bound of the ELBSP. A proposed heuristic method with polynomial complexity is then applied to figure out the near-optimal solutions of the ELBSP. Numerical example is presented to confirm the efficacy of the proposed method.

Keywords: economic lot-size scheduling problem, extended basic period, replenishment cycle division, recursive tightening, power-of-two

Procedia PDF Downloads 338
210 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 136
209 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 732
208 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 86
207 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 234
206 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE

Authors: Lakrim Abderrazak, Tahri Driss

Abstract:

This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).

Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.

Procedia PDF Downloads 581
205 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan

Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman

Abstract:

The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude toward learning and the educational environment of the student community. Social Media platforms have become a source of collaboration with one another throughout the globe, making it a small world. This study performs a focalized investigation of the adverse and constructive factors that have a strong impact not only on psychological adjustments but also on the academic performance of peers. This study is quantitative research adopting a random sampling method in which the participants were the students at the university. The researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill in the data on the Lickert Scale. The participants are from the age group of 18-24 years. The study applies user and gratification theory in order to examine the behavior of students practicing social media in their academic and personal lives. The findings of the study reveal that the use of social media platforms in the Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by means of seminars, workshops and by media itself to overcome the negative impacts of social media, leading towards sustainable education in Pakistan.

Keywords: social media, positive impacts, negative impacts, sustainable education, learning behaviour

Procedia PDF Downloads 57
204 Investigation of Polymer Solar Cells Degradation Behavior Using High Defect States Influence Over Various Polymer Absorber Layers

Authors: Azzeddine Abdelalim, Fatiha Rogti

Abstract:

The degradation phenomenon in polymer solar cells (PCSs) has not been clearly explained yet. In fact, there are many causes that show up and influence these cells in a variety of ways. Also, there has been a growing concern over this degradation in the photovoltaic community. One of the main variables deciding PSCs photovoltaic output is defect states. In this research, devices modeling is carried out to analyze the multiple effects of degradation by applying high defect states (HDS) on ideal PSCs, mainly poly(3-hexylthiophene) (P3HT) absorber layer. Besides, a comparative study is conducted between P3HT and other PSCs by a simulation program called Solar Cell Capacitance Simulator (SCAPS). The adjustments to the defect parameters in several absorber layers explain the effect of HDS on the total output properties of PSCs. The performance parameters for HDS, quantum efficiency, and energy band were therefore examined. This research attempts to explain the degradation process of PSCs and the causes of their low efficiency. It was found that the defects often affect PSCs performance, but defect states have a little effect on output when the defect level is less than 1014cm-3, which gives similar performance values with P3HT cells when these defects is about 1019cm-3. The high defect states can cause up to 11% relative reduction in conversion efficiency of ideal P3HT. In the center of the band gap, defect states become more noxious. This approach is for one of the degradation processes potential of PSCs especially that use fullerene derivative acceptors.

Keywords: degradation, high defect states, polymer solar cells, SCAPS-1D

Procedia PDF Downloads 94
203 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 153
202 Fear of Crime Among Females on University Campuses

Authors: Shahed, Tala, Ahlam, Marah, Sara, Shaden

Abstract:

Research on fear of crime has shown that there are many influences on it, including gender, age, and geographic location. For example, women are more afraid of crime than men. The campus has a high crime rate and fear of crime due to many hiding places and blind spots; women are more likely than men to be victims of certain types of crime, such as rape and verbal and sexual harassment. And it became clear that older female students have a different perception of the place over time and other knowledge and fear of it, another study at Hashemite University. This study aims to understand better how the environment affects the negative experiences of female students and how their age and familiarity environment affects their sense of safety. This study also examines whether CPTED can be used to help prevent crime. The Broken Windows Theory also states that crime occurs in areas with overt indications of criminal activity, antisocial behavior, and civil unrest. This is related to the principle of CPTED maintenance and monitoring, activity support, regional development, and access control. Given their increased vulnerability to harassment, “sexual harassment” can refer to different behaviors. On campuses, harassment was happening everywhere, but it was most prevalent in "blind spots" that were out of sight and deserted. This study uses a methodology based on quantitative data that depends on putting a number on the amount of a particular phenomenon that exists in the world. The main finding shows how CPTED works in an academic context and what adjustments need to be made.

Keywords: Hashmite University, CPTED, crime prevention, university campus, fear of crime, female faer, broken window theory

Procedia PDF Downloads 80
201 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: parameterization, response surface, structure optimization, pressure hull

Procedia PDF Downloads 234