Search results for: multiple kernel learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11495

Search results for: multiple kernel learning

11255 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
11254 Mobile Learning: Toward Better Understanding of Compression Techniques

Authors: Farouk Lawan Gambo

Abstract:

Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.

Keywords: data analysis, compression techniques, learning content, traditional learning approach

Procedia PDF Downloads 345
11253 Towards Appreciating Knowing Body in the Future Schools: Developing Methods for School Teachers to Understand the Role of the Body in Teaching and Learning

Authors: Johanna Aromaa

Abstract:

This paper presents a development project aimed at enhancing student-teachers' awareness of the role of the body in teaching and learning. In this project, theory and practice are brought into dialogue through workshops of body work that utilize art-based and somatic methods. They are carried out in a special course for educating teachers in a Finnish University. Expected results from the project include: 1) the participants become aware of the multiple roles that the body has in educational encounters, and with it, develop a more holistic approach to teaching and learning, 2) the participants gain access to and learn to form bodily knowledge, 3) a working model on enhancing student-teachers' awareness of the role of bodily knowledge in teacher’s work is developed. Innovative methods as well as a radical rethinking of the nature of teaching and learning are needed if we are to appreciate knowing body in the future schools.

Keywords: bodily knowledge, the body, somatic methods, teacher education

Procedia PDF Downloads 435
11252 Inter-Communication-Management in Cases with Disabled Children (ICDC)

Authors: Dena A. Hussain

Abstract:

The objective of this project is to design an Information and Communication Technologies (ICT) tool based on a standardized platform to assist the work-integrated learning process of caretakers of disabled children. The tool should assist the intercommunication between caretakers and improve the learning process through knowledge bridging between all involved caretakers. Some children are born with disabilities while others have special needs after an illness or accident. Special needs children often need help in their learning process and require tools and services in a different way. In some cases the child has multiple disabilities that affect several capabilities in different ways. These needs are to be transformed into different learning techniques that the staff or personal (called caretakers in this project) caring for the child needs to learn and adapt. The caretakers involved are also required to learn new learning or training techniques and utilities specialized for the child’s needs. In many cases the number of people caring for the child’s development is rather large; the parents, specialist pedagogues, teachers, therapists, psychologists, personal assistants, etc. Each group of specialists has different objectives and in some cases the merge between theses specifications is very unique. This makes the synchronization between different caretakers difficult, resulting often in low level cooperation. By better intercommunication between professions both the child’s development could be improved but also the caretakers’ methods and knowledge of each other’s work processes and their own profession. This introduces a unique work integrated learning environment for all personnel involve, merging learning and knowledge in the work environment and at the same time assist the children’s development process. Creating an iterative process generates a unique learning experience for all involved. Using a work integrated platform will help encourage and support the process of all the teams involved in the process.We believe that working with children who have special needs is a continues learning/working process that is always integrated to achieve one main goal, which is to make a better future for all children.

Keywords: information and communication technologies (ICT), work integrated learning (WIL), sustainable learning, special needs children

Procedia PDF Downloads 293
11251 Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy

Authors: Anne-Marie Tuomala

Abstract:

Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction.

Keywords: education for sustainable development, learning attitudes, learning of circular economy, virtual learning

Procedia PDF Downloads 42
11250 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 146
11249 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.

Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o

Procedia PDF Downloads 284
11248 Sharing Experience in Authentic Learning for Mobile Security

Authors: Kai Qian, Lixin Tao

Abstract:

Mobile devices such as smartphones are getting more and more popular in our daily lives. The security vulnerability and threat attacks become a very emerging and important research and education topic in computing security discipline. There is a need to have an innovative mobile security hands-on laboratory to provide students with real world relevant mobile threat analysis and protection experience. This paper presents an authentic teaching and learning mobile security approach with smartphone devices which covers most important mobile threats in most aspects of mobile security. Each lab focuses on one type of mobile threats, such as mobile messaging threat, and conveys the threat analysis and protection in multiple ways, including lectures and tutorials, multimedia or app-based demonstration for threats analysis, and mobile app development for threat protections. This authentic learning approach is affordable and easily-adoptable which immerse students in a real world relevant learning environment with real devices. This approach can also be applied to many other mobile related courses such as mobile Java programming, database, network, and any security relevant courses so that can learn concepts and principles better with the hands-on authentic learning experience.

Keywords: mobile computing, Android, network, security, labware

Procedia PDF Downloads 405
11247 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 123
11246 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI

Procedia PDF Downloads 121
11245 Transdermal Delivery of Sodium Diclofenac from Palm Kernel Oil Esteres Nanoemulsions

Authors: Malahat Rezaee, Mahiran Basri, Abu Bakar Salleh, Raja Noor Zaliha Raja Abdul Rahman

Abstract:

Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that has been progressively considered in pharmaceutical science for transdermal delivery of the drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using the surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils, contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research aimed to study the effect of terpene type and concentration on sodium diclofenac permeation from palm kernel oil esters nanoemulsions and physicochemical properties of the nanoemulsions systems. The effect of various terpenes of geraniol, menthone, menthol, cineol and nerolidol at different concentrations of 0.5, 1.0, 2.0, and 4.0% on permeation of sodium diclofenac were evaluated using Franz diffusion cells and rat skin as permeation membrane. The results of this part demonstrated that all terpenes showed promoting effect on sodium diclofenac penetration. However, menthol and menthone at all concentrations showed significant effects (<0.05) on drug permeation. The most outstanding terpene was menthol with the most significant effect for skin permeability of sodium diclofenac. The effect of terpenes on physicochemical properties of nanoemulsion systems was investigated on the parameters of particle size, zeta potential, pH, viscosity and electrical conductivity. The result showed that all terpenes had the significant effect on particle size and non-significant effects on the zeta potential of the nanoemulsion systems. The effect of terpenes was significant on pH, excluding the menthone at concentrations of 0.5 and 1.0%, and cineol and nerolidol at the concentration of 2.0%. Terpenes also had significant effect on viscosity of nanoemulsions exception of menthone and cineol at the concentration of 0.5%. The result of conductivity measurements showed that all terpenes at all concentration except cineol at the concentration of 0.5% represented significant effect on electrical conductivity.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, terpenes, skin permeation

Procedia PDF Downloads 420
11244 Attitude Towards E-Learning: A Case of University Teachers and Students

Authors: Muhamamd Shahid Farooq, Maazan Zafar, Rizawana Akhtar

Abstract:

E-learning technologies are the blessings of advancements in science and technology. These facilitate the learners to get information at any place and any time by improving their self-confidence, self-efficacy and effectiveness in teaching learning process. E-learning provides an individualized learning experience for learners and remove barriers faced by students during new and creative ways of gaining information. It provides a wide range of facilities to enable the teachers and students for effective and purposeful learning. This study was conducted to explore the attitudes of university students and teachers towards e-learning working in a metropolitan university of Pakistan. The personal, institutional and technological characteristics of the teachers and students of higher education institution effect the adoption of e-learning. For this descriptive study 449 students and 35 university teachers were surveyed by using a Likert scale type questionnaire consisting of 52 statements relating to six factors "perceived usefulness, intention to adopt e-learning, ease of e-learning use, availability resources, e-learning stressors, and pressure to use e-learning". Data were analyzed by making comparisons on the basis of different demographic factors. The findings of the study show that both type of respondents have positive attitude towards e-learning. However, the male and female respondents differ in their opinion for e-learning implementation.

Keywords: e-learning, ICT, e-sources of learning, questionnaire

Procedia PDF Downloads 526
11243 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation

Authors: Yonatan Sverdlov, Shimon Ullman

Abstract:

Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.

Keywords: continual learning, life-long learning, neural analogies, adaptive modulation

Procedia PDF Downloads 70
11242 An Automatic Method for Building Learners’ Groups in Virtual Environment

Authors: O. Bourkoukou, Essaid El Bachari

Abstract:

The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.

Keywords: building groups, collaborative learning, e-learning, learning objects

Procedia PDF Downloads 296
11241 General Purpose Graphic Processing Units Based Real Time Video Tracking System

Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai

Abstract:

Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.

Keywords: connected components, embrace threads, local weighted kernel, structuring elements

Procedia PDF Downloads 437
11240 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods

Procedia PDF Downloads 431
11239 Students’ Perception of Their M-Learning Readiness

Authors: Sulaiman Almutairy, Trevor Davies, Yota Dimitriadi

Abstract:

This paper presents study investigating how to understand better the psychological readiness for mobile learning (m-learning) among Saudi students, while also evaluating m-learning in Saudi Arabia-a topic that has not yet received adequate attention from researchers. Data was acquired through a questionnaire administered to 131 Saudi students at UK universities, in July 2013. The study confirmed that students are confident using mobile devices in their daily lives and that they would welcome more opportunities for mobile learning. The findings indicated that Saudi higher education students are highly familiar with, and are psychologically ready for, m-learning.

Keywords: m-learning, mobile technologies, psychological readiness, higher education

Procedia PDF Downloads 519
11238 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria

Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju

Abstract:

The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.

Keywords: school climate, parental involvement, ODL, learning gains, mathematics

Procedia PDF Downloads 519
11237 Quantifying the Aspect of ‘Imagining’ in the Map of Dialogical inquiry

Authors: Chua Si Wen Alicia, Marcus Goh Tian Xi, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee

Abstract:

In a world full of rapid changes, people often need a set of skills to help them navigate an ever-changing workscape. These skills, often known as “future-oriented skills,” include learning to learn, critical thinking, understanding multiple perspectives, and knowledge creation. Future-oriented skills are typically assumed to be domain-general, applicable to multiple domains, and can be cultivated through a learning approach called Dialogical Inquiry. Dialogical Inquiry is known for its benefits of making sense of multiple perspectives, encouraging critical thinking, and developing learner’s capability to learn. However, it currently exists as a quantitative tool, which makes it hard to track and compare learning processes over time. With these concerns, the present research aimed to develop and validate a quantitative tool for the Map of Dialogical Inquiry, focusing Imagining aspect of learning. The Imagining aspect four dimensions: 1) speculative/ look for alternatives, 2) risk taking/ break rules, 3) create/ design, and 4) vision/ imagine. To do so, an exploratory literature review was conducted to better understand the dimensions of Imagining. This included deep-diving into the history of the creation of the Map of Dialogical Inquiry and a review on how “Imagining” has been conceptually defined in the field of social psychology, education, and beyond. Then, we synthesised and validated scales. These scales measured the dimension of Imagination and related concepts like creativity, divergent thinking regulatory focus, and instrumental risk. Thereafter, items were adapted from the aforementioned procured scales to form items that would contribute to the preliminary version of the Imagining Scale. For scale validation, 250 participants were recruited. A Confirmatory Factor Analysis (CFA) sought to establish dimensionality of the Imagining Scale with an iterative procedure in item removal. Reliability and validity of the scale’s dimensions were sought through measurements of Cronbach’s alpha, convergent validity, and discriminant validity. While CFA found that the distinction of Imagining’s four dimensions could not be validated, the scale was able to establish high reliability with a Cronbach alpha of .96. In addition, the convergent validity of the Imagining scale was established. A lack of strong discriminant validity may point to overlaps with other components of the Dialogical Map as a measure of learning. Thus, a holistic approach to forming the tool – encompassing all eight different components may be preferable.

Keywords: learning, education, imagining, pedagogy, dialogical teaching

Procedia PDF Downloads 91
11236 E-Learning in Life-Long Learning: Best Practices from the University of the Aegean

Authors: Chryssi Vitsilaki, Apostolos Kostas, Ilias Efthymiou

Abstract:

This paper presents selected best practices on online learning and teaching derived from a novel and innovating Lifelong Learning program through e-Learning, which has during the last five years been set up at the University of the Aegean in Greece. The university, capitalizing on an award-winning, decade-long experience in e-learning and blended learning in undergraduate and postgraduate studies, recently expanded into continuous education and vocational training programs in various cutting-edge fields. So, in this article we present: (a) the academic structure/infrastructure which has been developed for the administrative, organizational and educational support of the e-Learning process, including training the trainers, (b) the mode of design and implementation based on a sound pedagogical framework of open and distance education, and (c) the key results of the assessment of the e-learning process by the participants, as they are used to feedback on continuous organizational and teaching improvement and quality control.

Keywords: distance education, e-learning, life-long programs, synchronous/asynchronous learning

Procedia PDF Downloads 333
11235 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 78
11234 Genetic Algorithm Optimization of Multiple Resources for Multi-Projects

Authors: A. Samer Ezeldin, Sarah A. Fotouh

Abstract:

Optimization of resources is very important in all fields, as in construction management. Project managers have to face problems regarding management of cost, time and available resources of single projects and more problems arise when managing multiple projects. Most of the studies focused on optimization of resources for a single project, but, this paper will discuss the design and modeling of multiple resources optimization for multiple projects using Genetic Algorithm. Most of the companies in construction industry optimize the resources for single projects only, but with the presence of several mega projects in several developing countries running at the same time, there is a need for a model to enhance the efficiency of available resources and decreases the fluctuation as much as possible. The proposed model calculates the cost of each resource, tries to minimize the cost of extra resources as much as possible and generates the schedule of each project within a selected program.

Keywords: construction management, genetic algorithm, multiple projects, multiple resources, optimization

Procedia PDF Downloads 458
11233 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 515
11232 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 209
11231 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment

Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing

Abstract:

Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.

Keywords: seamless learning, flipped classroom, seamless-flipped environment, language learning model

Procedia PDF Downloads 186
11230 A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum

Authors: R. Bawazir, P. Jones

Abstract:

Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.

Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework

Procedia PDF Downloads 321
11229 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier

Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi

Abstract:

The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.

Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance

Procedia PDF Downloads 492
11228 Facilitating Academic Growth of Students With Autism

Authors: Jolanta Jonak

Abstract:

All students demonstrate various learning preferences and learning styles that range from visual, auditory to kinesthetic preferences. These learning preferences are further impacted by individual cognitive profiles hat characterizes itself in linguistic strengths, logical- special, inter-or intra- personal, just to name a few. Students from culturally and linguistically diverse backgrounds (CLD) have an increased risk of being misunderstood by many school systems and even medical personnel. Students with disability, specifically Autism, are faced with another layer of learning differences. Research indicates that large numbers of students are not provided the type of education and types of supports they need in order to be successful in an academic environment. Multiple research findings indicate that significant numbers of school staff self-reports that they do not feel adequately prepared to work with students with disability and different learing profiles. It is very important for the school staff to be educated about different learning needs of students with autism spectrum disorders. Having the knowledge, school staff can avoid unnecessary referrals for office referrals and avoid inaccurate decisions about restrictive learning environments. This presentation will illustrate the cognitive differences in students with autism, how to recognize them, and how to support them through Differentiated Instruction. One way to ensure successful education for students with disability is by providing Differentiated Instruction (DI). DI is quickly gaining its popularity in the Unites States as a scientific- research based instructional approach for all students. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have an opportunity to learn through approaches that are suitable to their needs. It is extremely important for the school staff, especially school psychologists who often are the first experts to be consulted by educators, to be educated about differences due to learning preference styles and differentiation needs.

Keywords: special education, autism, differentiation, differences, differentiated instruction

Procedia PDF Downloads 44
11227 Social Learning and the Flipped Classroom

Authors: Albin Wallace

Abstract:

This paper examines the use of social learning platforms in conjunction with the emergent pedagogy of the ‘flipped classroom’. In particular the attributes of the social learning platform “Edmodo” is considered alongside the changes in the way in which online learning environments are being implemented, especially within British education. Some observations are made regarding the use and usefulness of these platforms along with a consideration of the increasingly decentralized nature of education in the United Kingdom.

Keywords: education, Edmodo, Internet, learning platforms

Procedia PDF Downloads 542
11226 Mobile Learning in Teacher Education: A Review in Context of Developing Countries

Authors: Mehwish Raza

Abstract:

Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.

Keywords: design model, developing countries, key characteristics, mobile learning

Procedia PDF Downloads 446