Search results for: methodical series
2461 The Design of Smart Tactile Textiles for Therapeutic Applications
Authors: Karen Hong
Abstract:
Smart tactile textiles are a series of textile-based products that incorporates smart embedded technology to be utilized as tactile therapeutic applications for 2 main groups of target users. The first group of users will be children with sensory processing disorder who are suffering from tactile sensory dysfunction. Children with tactile sensory issues may have difficulty tolerating the sensations generated from the touch of certain textures on the fabrics. A series of smart tactile textiles, collectively known as ‘Tactile Toys’ are developed as tactile therapy play objects, exposing children to different types of touch sensations within textiles, enabling them to enjoy tactile experiences together with interactive play which will help them to overcome fear of certain touch sensations. The second group of users will be the elderly or geriatric patients who are suffering from deteriorating sense of touch. One of the common consequences of aging is suffering from deteriorating sense of touch and a decline in motoric function. With the focus in stimulating the sense of touch for this particular group of end users, another series of smart tactile textiles, collectively known as ‘Tactile Aids’ are developed also as tactile therapy. This range of products can help to maintain touch sensitivity and at the same time allowing the elderly to enjoy interactive play to practice their hand-eye coordination and enhancing their motor skills. These smart tactile textile products are being designed and tested out by the end users and have proofed their efficacy as tactile therapy enabling the users to lead a better quality of life.Keywords: smart textiles, embedded technology, tactile therapy, tactile aids, tactile toys
Procedia PDF Downloads 1772460 Performance Assessment of Three Unit Redundant System with Environmental and Human Failure Using Copula Approach
Authors: V. V. Singh
Abstract:
We have studied the reliability measures of a system, which consists of two subsystems i.e. subsystem-1 and subsystem-2 in series configuration under different types of failure. The subsystem-1 has three identical units in parallel configuration and operating under 2-out-of-3: G policy and connected to subsystem-2 in series configuration. Each subsystem has different types of failure and repair rates. An important cause for failure of system is unsuitability of the environmental conditions, like overheating, weather conditions, heavy rainfall, storm etc. The environmental failure is taken into account in the proposed repairable system. Supplementary variable technique is used to study of system and some traditional measures such as; availability, reliability, MTTF and profit function are obtained for different values of parameters. In the proposed model, some particular cases of failure rates are explicitly studied.Keywords: environmental failure, human failure, availability, MTTF, reliability, profit analysis, Gumbel-Hougaard family copula
Procedia PDF Downloads 3532459 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 2732458 Innovation Trends in South Korea
Authors: Mario Gómez, José Carlos Rodríguez
Abstract:
This paper analyzes innovation trends in South Korea by means of the number of patent applications filed by residents and nonresidents during the period 1965 to 2012. Making use of patent data released by the World Intellectual Property Organization (WIPO), we search for the presence of multiple structural changes in patent application series in this country. These changes may suggest that firms’ innovative activity has been modified as a result of implementing some science, technology and innovation (STI) policies. Accordingly, the new regulations implemented in this country in the last decades have influenced its innovative activity. The question conducting this research is thus how STI policies in South Korea have influenced its innovation activity. The results confirm the existence of multiple structural changes in the series of patent applications resulting from alternative STI policies implemented during these years.Keywords: econometric methods, innovation activity, Korea, patent applications, science, technology and innovation policy, STI
Procedia PDF Downloads 3122457 Impact of Workers’ Remittances on Poverty in Pakistan: A Time Series Analysis by Ardl
Authors: Syed Aziz Rasool, Ayesha Zaman
Abstract:
Poverty is one of the most important problems for any developing nation. Workers’ remittances and investment plays a crucial role in development of any country by reducing the poverty level in Pakistan. This research studies the relationship between workers’ remittances and poverty alleviation. It also focused the significant effect on poverty reduction. This study uses time series data for the period of 1972-2013. Autoregressive Distributed Lag (ARDL)Model and Error Correction (ECM)Model has been used in order to find out the long run and short run relationship between the worker’s remittances and poverty level respectively. Thus, inflow of remittances showed the significant and negative impact on poverty level. Moreover, coefficient of error correction model explains the adjustment towards convergence and it has highly significant and negative value. According to this research, Policy makers should strongly focus on positive and effective policies to attract more remittances. JELCODE: JEL: J61 Procedia PDF Downloads 2872456 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.Keywords: Bak-Tang-Wiesenfeld sandpile model, cross-correlation, avalanches, prediction method
Procedia PDF Downloads 3812455 Effects of Financial Development on Economic Growth in South Asia
Authors: Anupam Das
Abstract:
Although financial liberalization has been one of the most important policy prescriptions of international organizations like the World Bank and the IMF, the effect of financial liberalization on economic growth in developing countries is far from unanimous. Since the '80s, South Asian countries made a significant development in liberalization the financial sector. However, due to unavailability of a sufficient number of time series observations, the relationship between economic growth and financial development has not been investigated adequately. We aim to fill this gap by examining time series data of five developing countries from the South Asian region: Bangladesh, India, Pakistan, Sri Lanka, and Nepal. Applying the cointegration tests and Granger causality within the vector error correction model (VECM), we do not find unanimous evidence of financial development on positive economic growth. These results are helpful for developing countries which have been trying to liberalize the financial sector in recent decades.Keywords: economic growth, financial development, Granger causality, South Asia
Procedia PDF Downloads 3702454 Spectacles of the City: An Analysis of the Effects of Festivals in the Formation of New Urban Identities
Authors: Anusmita Das
Abstract:
In the post-industrial scenario, cities in India have become critical sites of negotiation and are expected to become some of the largest urban agglomeration of the twenty-first century. This has created a pluralist identity resulting in a new multifarious urbanism pervading throughout the entire urban landscape. There is an ambiguity regarding the character of present day Indian cities with new meanings emerging and no methodical study to understand them. More than an abstract diagram, the present day cities can be looked at as an ensemble of meanings. One of the ways in which the meaning is reflected is through events. Festivals such as Diwali, Dussera, Durga Puja, Ganesh Chaturthi, etc have transpired as the phenomenon of the city, and their presence in the everyday landscape weaves itself through the urban fabric dominating the popular visual culture of Indian cities. Festivals influence people’s idea of a city. Ritual, festival, celebrations are important in shaping of the urban environment and in their influence on the intangible aspect of the urban setting. These festivals pertaining to the city in motion have emerged as the symbolic image of the emerging urban Indian condition giving birth to new urban identities. The study undertaken to understand the present context of temporality of Indian cities is important in analyzing the process of its formation and transformation. This study aims to review the evolution of new dimensions of urbanism in India as well as its implication on the identity of cities.Keywords: urban identities, urban design, festivals, rituals, celebrations, inter-disciplinary study
Procedia PDF Downloads 2532453 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate
Procedia PDF Downloads 2542452 Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan
Authors: Muhammad Imran, Iqra Basit, Mobushir Riaz Khan, Sajid Rasheed Ahmad
Abstract:
The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar.Keywords: Landsat NDVI, panel models, temperature, rainfall
Procedia PDF Downloads 2052451 Depletion Behavior of Potassium by Continuous Cropping Using Rice as a Test Crop
Authors: Rafeza Begum, Mohammad Mokhlesur Rahman, Safikul Moula, Rafiqul Islam
Abstract:
Potassium (K) is crucial for healthy soil and plant growth. However, K fertilization is either disregarded or poorly underutilized in Bangladesh agriculture, despite the great demand for crops. This could eventually result in a significant depletion of the soil's potassium reserves, irreversible alteration of the minerals that contain potassium, and detrimental effects on crop productivity. Soil K mining in Bangladesh is a worrying problem, and we need to evaluate it thoroughly and find remedies. A pot culture experiment was conducted in the greenhouse of Bangladesh Institute of Nuclear Agriculture (BINA) using eleven soil series of Bangladesh in order to see the depletion behaviour of potassium (K) by continuous cropping using rice (var. Iratom-24) as the test crop. The soil series were Ranishankhail, Kaonia. Sonatala, Silmondi, Gopalpur, Ishurdi, Sara, Kongsha, Nunni, Lauta and Amnura on which four successive rice plants (45 days duration) were raised with (100 ppm K) or without addition of potassium. Nitrogen, phosphorus, sulfur and zinc were applied as basal to all pots. Potassium application resulted in higher dry matter yield, increased K concentration and uptake in all the soils compared with no K treatment; which gradually decreased in the subsequent harvests. Furthermore, plant takes up K not only from exchangeable pool but also from non-exchangeable sites and a minimum replenishment of K from the soil reserve was observed. Continuous cropping has resulted in the depletion of available K of the soil. The result indicated that in order to sustain higher crop yield under intensive cultivation, the addition of potash fertilizer is necessary.Keywords: potassium, exchangeable pool, depletion behavior., Soil series
Procedia PDF Downloads 1262450 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques
Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri
Abstract:
Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior
Procedia PDF Downloads 3072449 The Social Process of Alternative Dispute Resolution and Collective Conciliation: Unveiling the Theoretical Framework
Authors: Adejoke Yemisi Ige
Abstract:
This study presents a conceptual analysis and investigation into the development of a systematic framework required for better understanding of the social process of Alternative Dispute Resolution (ADR) and collective conciliation. The critical examination presented in this study is significant because; it draws on insight from ADR, negotiation and collective bargaining literature and applies it in our advancement of a methodical outline which gives an insight into the influence of the key actors and other stakeholder strategies and behaviours during dispute resolution in relation to the outcomes which is novel. This study is qualitative and essentially inductive in nature. One of the findings of the study confirms the need to consider ADR and collective conciliation within the context of the characteristic conditions; which focus on the need for some agreement to be reached. Another finding of the study shows the extent which information-sharing, willingness of the parties to negotiate and make concession assist both parties to attain resolution. This paper recommends that in order to overcome deadlock and attain acceptable outcomes at the end of ADR and collective conciliation, the importance of information exchange and sustenance of trade union and management relationship cannot be understated. The need for trade unions and management, the representatives to achieve their expectations in order to build the confidence and assurance of their respective constituents is essential. In conclusion, the analysis presented in this study points towards a set of factors that together can be called the social process of collective conciliation nevertheless; it acknowledges that its application to collective conciliation is new.Keywords: alternative dispute resolution, collective conciliation, social process, theoretical framework, unveiling
Procedia PDF Downloads 1532448 Trends in Arabic Drama Series (Musalsalat) Production
Authors: Paradigm Shift
Abstract:
In an overwhelmingly import oriented content bazaar of Arabian TV industry, Musalsalat stand unique in their indigenousness and mass popularity, being rivalled only by movies and football. The Arabic term ‘Musalsalat’ stands for drama series with episodes of 30-45 minutes duration; the format being close to Latin American Telenovela concept-clear cut stories with definitive endings that permit narrative closures. Traditionally Musalsalat were either situational comedies or religiously inspired. Present-day productions have started addressing historical, creative and socially progressive issues targeting the young and well-travelled audiences. Though these soaps get prime ratings throughout the year, it is during Ramadan, that they become a raving success in securing viewership. That Musalsalat have become paramount Ramadan programming is evident by their dominance on the grid and attracting heavy ad-spend. The number of Musalsalats produced specifically for Ramadan reached over 100 last year with Ramadan TV advertising amounting to USD1, 947bn constituting 21% of the total regional TV Adspend of USD 9,189bn.Keywords: Musalsalat, drama, pan Arab, television
Procedia PDF Downloads 2822447 Economic Growth Relations to Domestic and International Air Passenger Transport in Brazil
Authors: Manoela Cabo da Silva, Elton Fernandes, Ricardo Pacheco, Heloisa Pires
Abstract:
This study examined cointegration and causal relationships between economic growth and regular domestic and international passenger air transport in Brazil. Total passengers embarked and disembarked were used as a proxy for air transport activity and gross domestic product (GDP) as a proxy for economic development. The test spanned the period from 2000 to 2015 for domestic passenger traffic and from 1995 to 2015 for international traffic. The results confirm the hypothesis that there is cointegration between passenger traffic series and economic development, showing a bi-directional Granger causal relationship between domestic traffic and economic development and unidirectional influence by economic growth on international passenger air transport demand. Variance decomposition of the series showed that domestic air transport was far more important than international transport to promoting economic development in Brazil.Keywords: air passenger transport, cointegration, economic growth, GDP, Granger causality
Procedia PDF Downloads 2332446 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?
Authors: Gu Pang, Bartosz Gebka
Abstract:
We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput
Procedia PDF Downloads 5042445 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis
Procedia PDF Downloads 4622444 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1302443 Usability Evaluation of a Mobile Application to Enhance the Use of Smartphone, by Visually Impaired Users in Indonesia
Authors: Johanna Renny Octavia, Kamila Okta Saarah
Abstract:
Smartphone nowadays is widely used by many people all over the world. However, people with vision impairment may experience difficulties that interfere with the proper usage of the smartphone. In Indonesia, the population of visually impaired is about 13 million people (estimated 285 million people worldwide). There are a number of mobile applications developed to enhance the use of smartphone by visually impaired. This paper discusses the usability evaluation of a mobile application, namely Ray Vision, designed to help visually impaired in using smartphone. A series of usability testing with a number of Indonesian visually impaired revealed 28 usability problems in the mobile application that led to 14 design recommendations. The redesigned application was then re-evaluated through another usability testing series. The results showed that all five usability criteria assessed were increased (usefulness by 13%, effectiveness by 27%, efficiency by 27%, satisfaction by 23%, and learnability by 12%). The System Usability Score (SUS) was also increased by 14.92%.Keywords: mobile application, smartphone, usability evaluation, vision impaired
Procedia PDF Downloads 3122442 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.Keywords: climate, reanalysis, renewable energy, solar radiation
Procedia PDF Downloads 2092441 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing
Authors: Changhong Guo, Shaomei Fang, Yong He
Abstract:
In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.Keywords: European option pricing, fractional Black-Scholes equations, fractional g-Brownian motion, Taylor's series of fractional order, uncertain volatility
Procedia PDF Downloads 1632440 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 3952439 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 5042438 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 472437 Detecting Anomalous Matches: An Empirical Study from National Basketball Association
Authors: Jacky Liu, Dulani Jayasuriya, Ryan Elmore
Abstract:
Match fixing and anomalous sports events have increasingly threatened the integrity of professional sports, prompting concerns about existing detection methods. This study addresses prior research limitations in match fixing detection, improving the identification of potential fraudulent matches by incorporating advanced anomaly detection techniques. We develop a novel method to identify anomalous matches and player performances by examining series of matches, such as playoffs. Additionally, we investigate bettors' potential profits when avoiding anomaly matches and explore factors behind unusual player performances. Our literature review covers match fixing detection, match outcome forecasting models, and anomaly detection methods, underscoring current limitations and proposing a new sports anomaly detection method. Our findings reveal anomalous series in the 2022 NBA playoffs, with the Phoenix Suns vs Dallas Mavericks series having the lowest natural occurrence probability. We identify abnormal player performances and bettors' profits significantly decrease when post-season matches are included. This study contributes by developing a new approach to detect anomalous matches and player performances, and assisting investigators in identifying responsible parties. While we cannot conclusively establish reasons behind unusual player performances, our findings suggest factors such as team financial difficulties, executive mismanagement, and individual player contract issues.Keywords: anomaly match detection, match fixing, match outcome forecasting, problematic players identification
Procedia PDF Downloads 792436 A Guide for Using Viscoelasticity in ANSYS
Authors: A. Fettahoglu
Abstract:
Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS.Keywords: ANSYS, generalized Maxwell model, finite element method, Prony series, viscoelasticity, viscoelastic material curve fitting
Procedia PDF Downloads 6032435 Forecasting Model to Predict Dengue Incidence in Malaysia
Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen
Abstract:
Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting
Procedia PDF Downloads 4852434 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 1652433 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 852432 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 490