Search results for: medical decision support
12697 Evaluation of Aggregate Risks in Sustainable Manufacturing Using Fuzzy Multiple Attribute Decision Making
Authors: Gopinath Rathod, Vinod Puranik
Abstract:
Sustainability is regarded as a key concept for survival in the competitive scenario. Industrial risk and diversification of risk type’s increases with industrial developments. In the context of sustainable manufacturing, the evaluation of risk is difficult because of the incomplete information and multiple indicators. Fuzzy Multiple Attribute Decision Method (FMADM) has been used with a three level hierarchical decision making model to evaluate aggregate risk for sustainable manufacturing projects. A case study has been presented to reflect the risk characteristics in sustainable manufacturing projects.Keywords: sustainable manufacturing, decision making, aggregate risk, fuzzy logic, fuzzy multiple attribute decision method
Procedia PDF Downloads 51812696 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights
Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy
Abstract:
The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems
Procedia PDF Downloads 7312695 Quantum Decision Making with Small Sample for Network Monitoring and Control
Authors: Tatsuya Otoshi, Masayuki Murata
Abstract:
With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm
Procedia PDF Downloads 7812694 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank
Authors: Jalal Haghighat Monfared, Zahra Akbari
Abstract:
Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.Keywords: business intelligence, business intelligence capability, decision making, decision quality
Procedia PDF Downloads 11112693 The Antecedent Variables of Government Financial Accounting System (SAKD) Implementation and Its Consequences: Empirical Study on the Device of Regional Coordinating Agency for Development of Cross County, City Region III Central Java Province, Indo
Authors: Dona Primasari
Abstract:
This study examines the antecedent variables of Government Financial Acccounting System (SAKD) implementation and its consequence. The antecedent variables are: decentralization of decision making, adaptation, and the manager support. The consequences are satisfaction and performance officer. This research represents the empirical test which used convenience sampling technics in data collection. The data were collected from 167 officers of local government in the Regional Coordinating Agency for Development of Cross County/City Region III Central Java Province. Data analysis used Structural Equation Model (SEM) with the AMOS 18.0 program. The result of hypothesis examination indicates that six raised hypothesis are accepted and two hypothesis are rejected.Keywords: decentralization of decision making, adaptation officer, manager support, implementation of Government Accounting Financial System (SAKD), satisfaction and performance officer
Procedia PDF Downloads 38812692 From Pink to Ink: Understanding the Decision-Making Process of Post-mastectomy Women Who Have Covered Their Scars with Decorative Tattoos
Authors: Fernanda Rodriguez
Abstract:
Breast cancer is pervasive among women, and an increasing number of women are opting for a mastectomy: a medical operation in which one or both breasts are removed with the intention of treating or averting breast cancer. However, there is an emerging population of cancer survivors in European nations that, rather than attempting to reconstruct their breasts to resemble as much as possible ‘normal’ breasts, have turned to dress their scars with decorative tattoos. At a practical level, this study hopes to improve the support systems of these women by possibly providing professionals in the medical field, tattoo artists, and family members of cancer survivors with a deeper understanding of their motivations and decision-making processes for choosing an alternative restorative route - such as decorative tattoos - after their mastectomy. At an intellectual level, however, this study aims to narrow a gap in the academic field concerning the relationship between mastectomies and alternative methods of healing, such as decorative tattoos, as well as to broaden the understanding regarding meaning-making and the ‘normal’ feminine body. Thus, by means of semi-structured interviews and a phenomenological standpoint, this research set itself the goal to understand why do women who have undergone a mastectomy choose to dress their scars with decorative tattoos instead of attempting to regain ‘normalcy’ through breast reconstruction or 3D areola tattoos? The results obtained from the interviews with fifteen women showed that the disillusionment with one part of the other of breast restoration techniques had led these women to find an alternative form of healing that allows them not only to close a painful chapter of their life but also to regain control over their bodies after a period of time in which agency was taking away from them. Decorative post-mastectomy tattoos allow these women to grant their bodies with new meanings and produce their own interpretation of their feminine body and identity.Keywords: alternative femininity, decorative mastectomy tattoos, gender embodiment, social stigmatization
Procedia PDF Downloads 12012691 Long Term Examination of the Profitability Estimation Focused on Benefits
Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke
Abstract:
Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.Keywords: cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis
Procedia PDF Downloads 44412690 An Analysis of Business Intelligence Requirements in South African Corporates
Authors: Adheesh Budree, Olaf Jacob, Louis CH Fourie, James Njenga, Gabriel D Hoffman
Abstract:
Business Intelligence (BI) is implemented by organisations for many reasons and chief among these is improved data support, decision support and savings. The main purpose of this study is to determine BI requirements and availability within South African organisations. The study addresses the following areas as identified as part of a literature review; assessing BI practices in businesses over a range of industries, sectors and managerial functions, determining the functionality of BI (technologies, architecture and methods). It was found that the overall satisfaction with BI in larger organisations is low due to lack of ability to meet user requirements.Keywords: business intelligence, business value, data management, South Africa
Procedia PDF Downloads 57612689 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management
Authors: M. Shahab Uddin, Pennung Warnitchai
Abstract:
Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system
Procedia PDF Downloads 22612688 A Taxonomy of Behavior for a Medical Coordinator by Utlizing Leadership Styles
Authors: Aryana Collins Jackson, Elisabetta Bevacqua, Pierre De Loor, Ronan Querrec
Abstract:
This paper presents a taxonomy of non-technical skills, communicative intentions, and behavior for an individual acting as a medical coordinator. In medical emergency situations, a leader among the group is imperative to both patient health and team emotional and mental health. Situational Leadership is used to make clear and easy-to-follow guidelines for behavior depending on circumstantial factors. Low-level leadership behaviors belonging to two different styles, directive and supporting, are identified from literature and are included in the proposed taxonomy. The high-level information in the taxonomy consists of the necessary non-technical skills belonging to a medical coordinator: situation awareness, decision making, task management, and teamwork. Finally, communicative intentions, dimensions, and functions are included. Thus this work brings high-level and low-level information - medical non-technical skills, communication capabilities, and leadership behavior - into a single versatile taxonomy of behavior.Keywords: human behavior, leadership styles, medical, taxonomy
Procedia PDF Downloads 15812687 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review
Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari
Abstract:
The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency
Procedia PDF Downloads 16112686 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services
Authors: Giada Feletti, Daniela Tedesco, Paolo Trucco
Abstract:
The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning the indicators currently used for the performance measurement of EMS systems. From this literature analysis, it emerged that current studies focus on two distinct perspectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). The perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal focuses on the entire healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid to the dependency of decisions that in current EMS management models tend to be neglected or underestimated. In particular, the integration of the two processes enables the evaluation of the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in the extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating the ones firstly not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draws us to exclude additional indicators due to the unavailability of data required for their computation. The final dashboard, which was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness of EDs accessibility in real-time. By associating each KPI to the EMS phase it refers to, it was also possible to design a well-balanced dashboard covering both efficiency and effective performance of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient’s care are covered by traditional KPIs compared to the subsequent phases taking place in the hospital ED. This could be taken into consideration for the potential future development of the dashboard. Moreover, the research could proceed by building a multi-layer dashboard composed of the first level with a minimal set of KPIs to measure the basic performance of the EMS system at an aggregate level and further levels with KPIs that can bring additional and more detailed information.Keywords: dashboard, decision support, emergency medical services, key performance indicators
Procedia PDF Downloads 11112685 Knowledge about Dementia: Why Should Family Caregivers Know that Dementia is a Terminal Disease?
Authors: Elzbieta Sikorska-Simmons
Abstract:
Dementia is a progressive terminal disease. Despite this recognition, research shows that most family caregivers do not know it, and it is unclear how this knowledge affects the quality of patient care. The aim of this qualitative study of 20 family caregivers for patients with advanced dementia is to examine how the caregiver's knowledge about dementia affects the quality of patient care in the context of healthcare decision-making, advanced care planning, and access to adequate support systems. Knowledge about dementia implies family caregivers' understanding of dementia trajectories, common symptoms/complications, and alternative treatment options (e.g., comfort feeding versus tube feeding). Data were collected in semi-structured interviews with 20 family caregivers. The interviews were conducted in person by the author and designed to elicit rich descriptions of family caregivers' experiences with healthcare decision-making and the management of common symptoms/complications of end-stage dementia as patient healthcare proxies. The study findings suggest that caregivers who recognize that dementia is a terminal disease are less likely to opt for life-extending treatments during the advanced stages. They are also more likely to seek palliative/hospice care, and consequently, they are better able to avoid unnecessary hospitalizations or medical procedures. For example, those who know that dementia is a terminal disease tend to opt for "comfort feeding" rather than "tube feeding" in managing the swallowing difficulties that accompany advanced dementia. In the context of advance care planning, family caregivers who know that dementia is a terminal disease tend to have more meaningful advance directives (e.g., Power of Attorney and Do Not Resuscitate orders). They are better prepared to anticipate common problems and pursue treatments that foster the best quality of patient life and care. Greater knowledge about advanced dementia helps them make more informed decisions that focus on enhancing the quality of patient life rather than just survival. In addition, those who know that dementia is a terminal disease are more likely to establish adequate support systems to help them cope with the complex demands of caregiving. For example, they are more likely to seek dementia-oriented primary care programs that offer house visits or respite services. Based on the study findings, knowledge about dementia as a terminal disease is critical in the optimal management of patient care needs and the establishment of adequate support systems. More research is needed to better understand what caregivers need to know to better prepare them for the complex demands of dementia caregiving.Keywords: dementia education, family caregiver, management of dementia, quality of care
Procedia PDF Downloads 9812684 Factors Affecting the Adoption of Cloud Business Intelligence among Healthcare Sector: A Case Study of Saudi Arabia
Authors: Raed Alsufyani, Hissam Tawfik, Victor Chang, Muthu Ramachandran
Abstract:
This study investigates the factors that influence the decision by players in the healthcare sector to embrace Cloud Business Intelligence Technology with a focus on healthcare organizations in Saudi Arabia. To bring this matter into perspective, this study primarily considers the Technology-Organization-Environment (TOE) framework and the Human Organization-Technology (HOT) fit model. A survey was hypothetically designed based on literature review and was carried out online. Quantitative data obtained was processed from descriptive and one-way frequency statistics to inferential and regression analysis. Data were analysed to establish factors that influence the decision to adopt Cloud Business intelligence technology in the healthcare sector. The implication of the identified factors was measured, and all assumptions were tested. 66.70% of participants in healthcare organization backed the intention to adopt cloud business intelligence system. 99.4% of these participants considered security concerns and privacy risk have been the most significant factors in the adoption of cloud Business Intelligence (CBI) system. Through regression analysis hypothesis testing point that usefulness, service quality, relative advantage, IT infrastructure preparedness, organization structure; vendor support, perceived technical competence, government support, and top management support positively and significantly influence the adoption of (CBI) system. The paper presents quantitative phase that is a part of an on-going project. The project will be based on the consequences learned from this study.Keywords: cloud computing, business intelligence, HOT-fit model, TOE, healthcare and innovation adoption
Procedia PDF Downloads 16912683 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 12312682 A Tool for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: digital information management, file format, endangerment analysis, fuzzy models
Procedia PDF Downloads 40212681 Extended Literature Review on Sustainable Energy by Using Multi-Criteria Decision Making Techniques
Authors: Koray Altintas, Ozalp Vayvay
Abstract:
Increased global issues such as depletion of sources, environmental problems and social inequality triggered public awareness towards finding sustainable solutions in order to ensure the well-being of the current as well as future generations. Since energy plays a significant role in improved social and economic well-being and is imperative on both industrial and commercial wealth creation, it is a must to develop a standardized set of metrics which makes it possible to indicate the present condition relative to conditions in the past and to develop any perspective which is required to frame actions for the future. This is not an easy task by considering the complexity of the issue which requires integrating economic, environmental and social aspects of sustainable energy. Multi-criteria decision making (MCDM) can be considered as a form of integrated sustainability evaluation and a decision support approach that can be used to solve complex problems featuring; conflicting objectives, different forms of data and information, multi-interests and perspectives. On that matter, MCDM methods are useful for providing solutions to complex energy management problems. The aim of this study is to review MCDM approaches that can be used for examining sustainable energy management. This study presents an insight into MCDM techniques and methods that can be useful for engineers, researchers and policy makers working in the energy sector.Keywords: sustainable energy, sustainability criteria, multi-criteria decision making, sustainability dimensions
Procedia PDF Downloads 32912680 Mandatory Wellness Assessments for Medical Students at the University of Ottawa
Authors: Haykal. Kay-Anne
Abstract:
The health and well-being of students is a priority for the Faculty of Medicine at the University of Ottawa. The demands of medical studies are extreme, and many studies confirm that the prevalence of psychological distress is very high among medical students and that it is higher than that of the general population of the same age. The main goal is to identify risk factors for mental health among medical students at the University of Ottawa. The secondary objectives are to determine the variation of these risk factors according to demographic variables, as well as to determine if there is a change in the mental health of students during the 1st and 3rd years of their study. Medical students have a mandatory first and third-year wellness check meeting. This assessment includes a questionnaire on demographic information, mental health, and risk factors such as physical health, sleep, social support, financial stress, education and career, stress and drug use and/or alcohol. Student responses were converted to numerical values and analyzed statistically. The results show that 61% of the variation in the mean of the mental health score is explained by the following risk factors (R2 = 0.61, F (9.396) = 67.197, p < 0.01): lack of sleep and fatigue (β = 0.281, p < 0.001), lack of social support (β = 0.217, p <0.001), poor study or career development (β = 0.195, p < 0.001) and an increase stress and drug and alcohol use (β = -0.239, p < 0.001). No demographic variable has a significant effect on the presence of risk factors. In addition, fixed-effects regression demonstrated significantly lower mental health (p < 0.1) among first-year students (M = 0.587, SD = 0.072) than among third-year students (M = 0.719, SD = 0.071). This preliminary study indicates the need to continue data collection and analysis to increase the significance of the study results. As risk factors are present at the beginning of medical studies, it is important to offer resources to students very early in their medical studies and to have close monitoring and supervision.Keywords: assessment of mental health, medical students, risk factors for mental health, wellness assessment
Procedia PDF Downloads 12112679 Investigating Problems and Social Support for Mothers of Poor Households
Authors: Niken Hartati
Abstract:
This study provides a description of the problem and sources of social support that given to 90 mothers from poor households. Data were collected using structured interviews with the three main questions: 1) what kind of problem in mothers daily life, 2) to whom mothers ask for help to overcome it and 3) the form of the assistances that provided. Furthermore, the data were analyzed using content analysis techniques were then coded and categorized. The results of the study illustrate the problems experienced by mothers of poor households in the form of: subsistence (37%), child care (27%), management of money and time (20%), housework (5%), bad place of living (5%), the main breadwinner (3%), and extra costs (3%). While the sources of social support that obtained by mothers were; neighbors (10%), extended family (8%), children (8%), husband (7%), parents (7%), and siblings (5%). Unfortunately, more mothers who admitted not getting any social support when having problems (55%). The form of social support that given to mother from poor household were: instrumental support (91%), emotional support (5%) and informational support (2%). Implications for further intervention also discussed in this study.Keywords: household problems, social support, mothers, poor households
Procedia PDF Downloads 36312678 The Relationship between Selfesteem, Social Support, and Mental Health among High School Students in Iran
Authors: Mohsen Shahbakhti
Abstract:
The aim of this study was to examine the relationship between self-esteem, social support and mental health in a sample of government high school students in Eshtehard city in Alborz Province in Iran. Three hundred and eleven students (boys) were included in this study. All participants completed the General Health Questionnaire (GHQ 12), Multidimensional Scale of Perceived Social Support (MSPSS -12), and Self-Esteem Scale (SS-10). The results revealed that self-esteem was positively associated with social support. Self-esteem and social support negatively associated with psychological distress. Self-esteem and social support to influence on mental health.Keywords: self-esteem, social support, mental health, high school students
Procedia PDF Downloads 48212677 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data
Authors: Michelangelo Sofo, Giuseppe Labianca
Abstract:
In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm
Procedia PDF Downloads 2212676 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 9112675 Awareness about Authenticity of Health Care Information from Internet Sources among Health Care Students in Malaysia: A Teaching Hospital Study
Authors: Renjith George, Preethy Mary Donald
Abstract:
Use of internet sources to retrieve health care related information among health care professionals has increased tremendously as the accessibility to internet is made easier through smart phones and tablets. Though there are huge data available at a finger touch, it is doubtful whether all the sources providing health care information adhere to evidence based practice. The objective of this survey was to study the prevalence of use of internet sources to get health care information, to assess the mind-set towards the authenticity of health care information available via internet sources and to study the awareness about evidence based practice in health care among medical and dental students in Melaka-Manipal Medical College. The survey was proposed as there is limited number of studies reported in the literature and this is the first of its kind in Malaysia. A cross sectional survey was conducted among the medical and dental students of Melaka-Manipal Medical College. A total of 521 students including medical and dental students in their clinical years of undergraduate study participated in the survey. A questionnaire consisting of 14 questions were constructed based on data available from the published literature and focused group discussion and was pre-tested for validation. Data analysis was done using SPSS. The statistical analysis of the results of the survey proved that the use of internet resources for health care information are equally preferred over the conventional resources among health care students. Though majority of the participants verify the authenticity of information from internet sources, there was considerable percentage of candidates who feels that all the information from the internet can be utilised for clinical decision making or were not aware about the need of verification of authenticity of such information. 63.7 % of the participants rely on evidence based practice in health care for clinical decision making while 34.2 % were not aware about it. A minority of 2.1% did not agree with the concept of evidence based practice. The observations of the survey reveals the increasing use of internet resources for health care information among health care students. The results warrants the need to move towards evidence based practice in health care as all health care information available online may not be reliable. The health care person should be judicious while utilising the information from such resources for clinical decision making.Keywords: authenticity, evidence based practice, health care information, internet
Procedia PDF Downloads 44412674 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities
Authors: Mehmet Bulent Topkaya, Mustafa Yildirim
Abstract:
Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment
Procedia PDF Downloads 30012673 Support Provided by Midwives to Women during Labour in a Public Hospital, Limpopo Province, South Africa: A Participant Observation Study
Authors: Sonto Maputle
Abstract:
Background: Support during labour increase women's chances of having positive childbirth experiences as well as childbirth outcomes. The purpose of this study was to determine the support provided by midwives to women during labour at the public hospital in Limpopo Province. The study was conducted at the Tertiary hospital in Limpopo Province. Methods: A qualitative, participant observation approach was used. Population consisted of all women that were admitted to deliver their babies and the midwives who provided midwifery care in the obstetric unit of one tertiary public hospital in Limpopo Province. Non-probability, purposive and convenience sampling were used to sample 24 women and 12 midwives. Data were collected through participant observations which included unstructured conversations with the use of observational guide, field notes of events and conversations that occurred when women interact with midwives were recorded verbatim and a Visual Analog Scale to complement the observations. Data was analysed qualitatively but were presented in the tables and bar graphs. Results: Five themes emerged as support provided by midwives during labour, namely; communication between women and midwives, informational support, emotional support activities, interpretation of the experienced labour pain and supportive care activities during labour. Conclusion: The communication was occurring when the midwife was rendering midwifery care and very limited for empowering. The information sharing focused on the assistive actions rather than on the activities that would promote mothers’ participation. The emotional support activities indicated lack of respect and disregard cultural preferences and this contributed to inability to exercise choices in decision-making. The study recommended the implementation of Batho Pele principles in order to provide woman-centred care during labour.Keywords: communication between women and midwives, labour pains, informational and emotional support, physical comforting measures
Procedia PDF Downloads 15212672 Water Quality Calculation and Management System
Authors: H. M. B. N Jayasinghe
Abstract:
The water is found almost everywhere on Earth. Water resources contain a lot of pollution. Some diseases can be spread through the water to the living beings. So to be clean water it should undergo a number of treatments necessary to make it drinkable. So it is must to have purification technology for the wastewater. So the waste water treatment plants act a major role in these issues. When considering the procedures taken after the water treatment process was always based on manual calculations and recordings. Water purification plants may interact with lots of manual processes. It means the process taking much time consuming. So the final evaluation and chemical, biological treatment process get delayed. So to prevent those types of drawbacks there are some computerized programmable calculation and analytical techniques going to be introduced to the laboratory staff. To solve this problem automated system will be a solution in which guarantees the rational selection. A decision support system is a way to model data and make quality decisions based upon it. It is widely used in the world for the various kind of process automation. Decision support systems that just collect data and organize it effectively are usually called passive models where they do not suggest a specific decision but only reveal information. This web base system is based on global positioning data adding facility with map location. Most worth feature is SMS and E-mail alert service to inform the appropriate person on a critical issue. The technological influence to the system is HTML, MySQL, PHP, and some other web developing technologies. Current issues in the computerized water chemistry analysis are not much deep in progress. For an example the swimming pool water quality calculator. The validity of the system has been verified by test running and comparison with an existing plant data. Automated system will make the life easier in productively and qualitatively.Keywords: automated system, wastewater, purification technology, map location
Procedia PDF Downloads 24712671 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 39412670 Data Management System for Environmental Remediation
Authors: Elizaveta Petelina, Anton Sizo
Abstract:
Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.Keywords: data management, environmental remediation, geographic information system, GIS, decision making
Procedia PDF Downloads 16112669 A Novel Multi-Attribute Green Decision Making Model for Environmental Supply Chain Sustainability
Authors: Amirhossein Mahlouji
Abstract:
In current business market, the concept of integrating environmental sustainability into long-term as well as routine operations is becoming a prevailing trend. Therefore, several stimuli are helping organization to move toward environmental sustainability. The concept of green supply chain management can help provide a strategic framework to develop a customized sustainability roadmap for each organization. In this regard, this paper is mainly focused on presenting a strategic decision making framework that will assist top level decision-making issues. This decision-making tool is based on literature and practice in the area of environmentally conscious business practices. The goal of this paper will be on the components and parameters of green supply chain management and how they serve as a baseline for the decision framework. Later, the applicability of a multi-input multi-output decision model (MIMO), will be analyzed as the analytical network process, within the green supply chain.Keywords: Multi-attribute, Green Supply Chain, Environmental, Sustainability
Procedia PDF Downloads 14912668 Risk Tolerance in Youth With Emerging Mood Disorders
Authors: Ange Weinrabe, James Tran, Ian B. Hickie
Abstract:
Risk-taking behaviour is common during youth. In the time between adolescence and early adulthood, young people (aged 15-25 years) are more vulnerable to mood disorders, such as anxiety and depression. What impact does an emerging mood disorder have on decision-making in youth at critical decision points in their lives? In this article, we explore the impact of risk and ambiguity on youth decision-making in a clinical setting using a well-known economic experiment. At two time points, separated by six to eight weeks, we measured risky and ambiguous choices concurrently with findings from three psychological questionnaires, the 10-item Kessler Psychological Distress Scale (K10), the 17-item Quick Inventory of Depressive Symptomatology Adolescent Version (QIDS-A17), and the 12-item Somatic and Psychological Health Report (SPHERE-12), for young help seekers aged 16-25 (n=30, mean age 19.22 years, 19 males). When first arriving for care, we found that 50% (n=15) of participants experienced severe anxiety (K10 ≥ 30) and were severely depressed (QIDS-A17 ≥ 16). In Session 2, taking attrition rates into account (n=5), we found that 44% (n=11) remained severe across the full battery of questionnaires. When applying multiple regression analyses of the pooled sample of observations (N=55), across both sessions, we found that participants who rated severely anxious avoided making risky decisions. We suggest there is some statistically significant (although weak) (p=0.09) relation between risk and severe anxiety scores as measured by K10. Our findings may support working with novel tools with which to evaluate youth experiencing an emerging mood disorder and their cognitive capacities influencing decision-making.Keywords: anxiety, decision-making, risk, adolescence
Procedia PDF Downloads 115