Search results for: drone audio signal
1883 The Role of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Aayah Al Yaari, Montaha Al Yaari, Ayman Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four months, while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: smart aids, attention, listening, problems
Procedia PDF Downloads 421882 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Adham Al Yaari, Ayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four months, while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: smart educational aids, listening attention, pupils, problems
Procedia PDF Downloads 521881 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 2271880 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 2931879 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 1791878 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1421877 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 5981876 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5541875 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6631874 Dynamic Stability of a Wings for Drone Aircraft Subjected to Parametric Excitation
Authors: Iyd Eqqab Maree, Habil Jurgen Bast
Abstract:
Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is an important aspect of investigation. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich beam like structures can be used in aircrafts and other applications such as robot arms for effective vibration control. These members may experience parametric instability when subjected to time dependant forces. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. The purpose of the present work is to investigate the dynamic stability of a three layered symmetric sandwich beam (Drone Aircraft wings ) subjected to an end periodic axial force . Equations of motion are derived using finite element method (MATLAB software). It is observed that with increase in core thickness parameter fundamental buckling load increases. The fundamental resonant frequency and second mode frequency parameter also increase with increase in core thickness parameter. Fundamental loss factor and second mode loss factor also increase with increase in core thickness parameter. Increase in core thickness parameter enhances the stability of the beam. With increase in core loss factor also the stability of the beam enhances. There is a very good agreement of the experimental results with the theoretical findings.Keywords: steel cantilever beam, viscoelastic material core, loss factor, transition region, MATLAB R2011a
Procedia PDF Downloads 4731873 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1551872 Embedded System of Signal Processing on FPGA: Underwater Application Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing
Procedia PDF Downloads 791871 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 1531870 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: language skills, implementing, listening skill, attention, smart aids
Procedia PDF Downloads 421869 Clinical Implication of Hyper-Intense Signal Thyroid Incidentaloma on Time of Flight Magnetic Resonance Angiography
Authors: Inseon Ryoo, Soo Chin Kim, Hyena Jung, Sangil Suh
Abstract:
Objectives: The purpose of this study is to evaluate the clinical significance of hyper-intense signal thyroid incidentalomas on the time of flight magnetic resonance angiography (TOF-MRA) using correlation study with ultrasound (US). Methods: We retrospectively reviewed 3,505 non-contrast TOF-MRA performed at an institution between September 2014 and May 2017. Two radiologists correlated the thyroid incidentalomas detected on TOF-MRA with US features which was obtained within three months interval between MRA and US examinations in consensus method. Results: The prevalence of hyper-intense signal thyroid nodules incidentally detected on TOF-MRA was 1.2% (43/3505). Among them, 35 people (81.4%) underwent US examinations, and total 45 hyper-intense signal thyroid nodules were detected on US exams. Of these 45 nodules, 35 nodules (72.9%) were categorized as benign (K-TIRADS category 2) on US exams. Fine needle aspiration was performed on 9 nodules according to the indications recommended by Korean Society of Thyroid Radiology. All except one high-suspicious thyroid nodule were confirmed as benign (Bethesda 2) on cytologic exams. One high-suspicious nodule on US showed a non-diagnostic result (Bethesda 1) on cytologic exam. However, this nodule collapsed after aspiration of thick colloid material. Conclusions: Our study showed that the most hyper-intense signal thyroid nodules detected on TOF-MRA were benign. Therefore, if a hyper-intense signal incidentaloma is found on TOF-MRA, further evaluation, especially invasive biopsy of the nodules could be suspended unless the patient had other symptoms or clinical factors suggesting the need for further evaluation.Keywords: incidentaloma, thyroid nodule, TOF MR angiography, ultrasound
Procedia PDF Downloads 1671868 Modeling of Digital and Settlement Consolidation of Soil under Oedomete
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3331867 Heuristic Classification of Hydrophone Recordings
Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas
Abstract:
An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.Keywords: anthrophony, hydrophone, k-means, machine learning
Procedia PDF Downloads 1701866 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability
Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang
Abstract:
Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)
Procedia PDF Downloads 4831865 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar
Authors: Shaolin Allen Liao, Hual-Te Chien
Abstract:
Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar
Procedia PDF Downloads 3441864 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 1271863 Effects of Gym-Based and Audio-Visual Guided Home-Based Exercise Programmes on Some Anthropometric and Cardiovascular Parameters Among Overweight and Obese College Students
Authors: Abiodun Afolabi, Rufus Adesoji Adedoyin
Abstract:
This study investigated and compared the effects of gym-based exercise programme (GEBP) and audio-visual guided home-based exercise programme (AVGHBEP) on selected Anthropometric variables (Weight (W), Body Mass Index (BMI), Waist Circumference (WC), Hip Circumference (HC), Thigh Circumference (TC), Waist-Hip-Ratio (WHR), Waist-Height-Ratio (WHtR), Waist-Thigh-Ratio (WTR), Biceps Skinfold Thickness (BSFT), Triceps Skinfold Thickness (TSFT), Suprailliac Skinfold Thickness (SISFT), Subscapular Skinfold Thickness (SSSFT) and Percent Body Fat (PBF)); and Cardiovasular variables (Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP) and Heart Rate (HR)) of overweight and obese students of Federal College of Education (Special), Oyo, Oyo State, Nigeria, with a view to providing information and evidence for GBEP and AVGHBEP in reducing overweight and obesity for promoting cardiovascular fitness. Eighty overweight and obese students (BMI ≥ 25 Kg/m²) were involved in this pretest-posttest quasi experimental study. Participants were randomly assigned into GBEP (n = 40) and AVGBBEP (n = 40) groups. Anthropometric and cardiovascular variables were measured using a weighing scale, height meter, tape measure, skinfold caliper and electronic sphygmomanometer following standard protocols. GBEP and AVGHBEP were implemented following a circuit training (aerobic and resistance training) pattern with a duration of 40-60 minutes, thrice weekly for twelve weeks. GBEP consisted of gymnasium supervised exercise programme while AVGHBEP is a Visual Display guided exercise programme conducted at the home setting. Data were analyzed by Descriptive and Inferential Statistics. The mean ages of the participants were 22.55 ± 2.55 and 23.65 ± 2.89 years for the GBEP group and AVGHBEP group, respectively. Findings showed that in the GBEP group, there were significant reductions in anthropometric variables and adiposity measures of Weight, BMI, BSFT, TSFT, SISFT, SSSFT, WC, HC, TC, WHtR, and PBF at week 12 of the study. Similarly, in the AVGHBEP group, there were significant reductions in Weight, BMI, BSFT, TSFT, SISFT, SSSFT, WC, HC, TC, WHtR and PBF at the 12th week of intervention. Comparison of the effects of GEBP and AVGHBEP on anthropometric variables and measures of adiposity showed that there was no significant difference between the two groups in weight, BMI, BSFT, TSFT, SISFT, SSSFT, WC, HC, TC, WHR, WHtR, WTR and PBF between the two groups at week 12 of the study. Furthermore, findings on the effects of exercise on programmes on cardiovascular variables revealed that significant reductions occurred in SBP in GBEP group and AVGHBEP group respectively. Comparison of the effects of GBEP and AVGHBEP on cardiovascular variables showed that there was no significant difference in SBP, DBP and HR between the two groups at week 12 of the study. It was concluded that the Audio-Visual Guided Home-based Exercise Programme was as effective as the Gym-Based Exercise Programme in causing a significant reduction in anthropometric variables and body fat among college students who are overweight and obese over a period of twelve weeks. Both Gymnasium-Based Exercise Programme and Audio-Visual Guided Home-Based Exercise Programme led to significant reduction in Systolic Blood Pressure over a period of weeks. Audio-Visual Guided Home-Based Exercise Programme can, therefore, be used as an alternative therapy in the non-pharmacological management of people who are overweight and obese.Keywords: gym-based exercises, audio-visual guided home-based exercises, anthropometric parameters, cardiovascular parameters, overweight students, obese students
Procedia PDF Downloads 371862 Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3491861 Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones
Authors: R. L. P. De Lima, F. C. B. Boogaard, R. E. De Graaf-Van Dinther
Abstract:
Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system.Keywords: blue-green algae, cyanobacteria, underwater drones / ROV / AUV, water quality monitoring
Procedia PDF Downloads 2071860 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation
Procedia PDF Downloads 1531859 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection
Authors: Pradthana Sianglam, Wittaya Ngeontae
Abstract:
A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion
Procedia PDF Downloads 3631858 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 2261857 55 dB High Gain L-Band EDFA Utilizing Single Pump Source
Authors: M. H. Al-Mansoori, W. S. Al-Ghaithi, F. N. Hasoon
Abstract:
In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression.Keywords: optical amplifiers, EDFA, L-band, optical networks
Procedia PDF Downloads 3481856 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.Keywords: cross-correlation, delay estimation, signal envelope, signal processing
Procedia PDF Downloads 4851855 Gauging Floral Resources for Pollinators Using High Resolution Drone Imagery
Authors: Nicholas Anderson, Steven Petersen, Tom Bates, Val Anderson
Abstract:
Under the multiple-use management regime established in the United States for federally owned lands, government agencies have come under pressure from commercial apiaries to grant permits for the summer pasturing of honeybees on government lands. Federal agencies have struggled to integrate honeybees into their management plans and have little information to make regulations that resolve how many colonies should be allowed in a single location and at what distance sets of hives should be placed. Many conservation groups have voiced their concerns regarding the introduction of honeybees to these natural lands, as they may outcompete and displace native pollinating species. Assessing the quality of an area in regard to its floral resources, pollen, and nectar can be important when attempting to create regulations for the integration of commercial honeybee operations into a native ecosystem. Areas with greater floral resources may be able to support larger numbers of honeybee colonies, while poorer resource areas may be less resilient to introduced disturbances. Attempts are made in this study to determine flower cover using high resolution drone imagery to help assess the floral resource availability to pollinators in high elevation, tall forb communities. This knowledge will help in determining the potential that different areas may have for honeybee pasturing and honey production. Roughly 700 images were captured at 23m above ground level using a drone equipped with a Sony QX1 RGB 20-megapixel camera. These images were stitched together using Pix4D, resulting in a 60m diameter high-resolution mosaic of a tall forb meadow. Using the program ENVI, a supervised maximum likelihood classification was conducted to calculate the percentage of total flower cover and flower cover by color (blue, white, and yellow). A complete vegetation inventory was taken on site, and the major flowers contributing to each color class were noted. An accuracy assessment was performed on the classification yielding an 89% overall accuracy and a Kappa Statistic of 0.855. With this level of accuracy, drones provide an affordable and time efficient method for the assessment of floral cover in large areas. The proximal step of this project will now be to determine the average pollen and nectar loads carried by each flower species. The addition of this knowledge will result in a quantifiable method of measuring pollen and nectar resources of entire landscapes. This information will not only help land managers determine stocking rates for honeybees on public lands but also has applications in the agricultural setting, aiding producers in the determination of the number of honeybee colonies necessary for proper pollination of fruit and nut crops.Keywords: honeybee, flower, pollinator, remote sensing
Procedia PDF Downloads 1411854 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 157