Search results for: deep wells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2487

Search results for: deep wells

2247 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 44
2246 Cuban Shelf Results of Exploration and Petroleum Potential

Authors: Vasilii V. Ananev

Abstract:

Oil-and-gas potential of Cuba is found through the discoveries among which there are the most large-scale deposits, such as the Boca de Jaruco and Varadero fields of heavy oils. Currently, the petroleum and petroleum products needs of the island state are satisfied by own sources by less than a half. The prospects of the hydrocarbon resource base development are connected with the adjacent water area of the Gulf of Mexico where foreign companies had been granted license blocks for geological study and further development since 2001. Two Russian companies - JSC Gazprom Neft and OJSC Zarubezhneft, among others, took part in the development of the Cuban part of the Gulf of Mexico. Since 2004, five oil wells have been drilled by various companies in the deep waters of the exclusive economic zone of Cuba. Commercial oil-and-gas bearing prospects have been established in neither of them for both geological and technological reasons. However, only a small part of the water area has been covered by drilling and the productivity of the drill core has been tested at the depth of Cretaceous sediments only. In our opinion, oil-and-gas bearing prospects of the exclusive economic zone of the Republic of Cuba in the Gulf of Mexico remain undervalued and the mentioned water area needs additional geological exploration. The planning of exploration work in this poorly explored region shall be carried out systematically and it shall be based on the results of the regional scientific research.

Keywords: Cuba, catoche, geology, exploration

Procedia PDF Downloads 291
2245 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 320
2244 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara

Authors: Rafik Baouche, Rabah Chaouchi

Abstract:

This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.

Keywords: stress, imagery, breakouts, sahara

Procedia PDF Downloads 76
2243 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt

Authors: Walid El Kamash

Abstract:

Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.

Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil

Procedia PDF Downloads 378
2242 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
2241 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 90
2240 Bank Filtration System in Highly Mineralized Groundwater

Authors: Medalson Ronghang, Pranjal Barman, Heemantajeet Medhi

Abstract:

Bank filtration (BF) being a natural method of abstracting surface water from the river or lake via sub-surface. It can be intensively used and operated under various operating conditions for sustainability. Field investigations were carried out at various location of Kokrajhar (Assam) and Srinagar (Uttarakhand) to assess the ground water and their bank filtration wells to compare and characterized the quality. Results obtained from the analysis of the data suggest that major water quality parameter were much below the drinking water standard of BIS 10500 (2012). However, the iron concentration was found to be more than permissible limit in more than 50% of the sampled hand pump; the concentration ranged between 0.33-3.50 mg/L with acidic in nature (5.4 to 7.4) in Kokrajhar and high nitrate in Srinagar. But the abstracted water from the RBF wells has attenuated water quality with no iron concentration in Kokrajhar. The aquifers and riverbed material collected along the bank of Rivers Gaurang and Alaknanda were sieved and classified as coarse silt to medium gravel. The hydraulic conductivity was estimated in the range 5×10⁻³ to 1.4×10⁻²- 3.09×10⁻⁴-1.29 ×10⁻³ for Kokrajhar and Srinagar respectively suggesting a good permeability of the aquifer. The maximum safe yield of the well was estimated to be in the range of 4000 to 7500 L/min. This paper aims at demonstrating bank filtration method as an alternative to mineralized groundwater for drinking water.

Keywords: Riverbank filtration, mineralization, water quality, groundwater

Procedia PDF Downloads 224
2239 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 149
2238 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 138
2237 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 180
2236 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education

Authors: Lihong Wu, Raymond Young

Abstract:

The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.

Keywords: knowledge, surface learning, deep learning, education

Procedia PDF Downloads 501
2235 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 161
2234 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 255
2233 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 87
2232 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 113
2231 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 153
2230 Microfacies Analysis and Paleoenvironmental Trends of the Paleocene Farrud and Mabruk Reservoirs, Concession 11, West Sirte Basin, Libya

Authors: Nisreen Agha

Abstract:

Investigation of representative core samples under the petrological microscope reveals common petrographic and mineralogical characteristics with distinct faunal assemblages, allowing establishing of the microfacies associations and deducing the paleoenvironmental trends of the Paleocene Farrud and Mabruk rock units. Recognition of the early and post-diagenetic processes, particularly dolomitization and micritization, as well as dissolution and precipitation of spary drusy calcite as a new morphism process affecting the reservoir rocks, is established. The microfacies trends detected from the investigation of 46 core samples from Farrud member (Lower Paleocene) representing six wells; QQQ1-11, GG1-11, LLL1-11, RRR1-11, RRR40-11, and RRR45-11 indicate that the deposition was started within the realm of shallow supratidal and intertidal subenvironments followed by deeper environments of the shelf bays with maximum sea level during inner shelf environment where fossiliferous bioclastic packstone dominated. The microfacies associations determined in 8 core samples from two wells LLL1and RRR40 representing Mabruk Member (Upper Paleocene), indicate paleoenvironmental trends marked by sea level fluctuations accompanied with a relatively marine shelf bay conditions intervened with short-lived shallow intertidal and supratidal warm coastal sedimentation. As a result, dolostone, evaporitic dismicrites, and gypsiferous dolostone of supratidal characters were deposited. They reflect rapid oscillation of the sea level marked by drop land-ward shift of the sea shore deposition prevailed by supratidal gypsiferous dolostone and numerous ferruginous materials as clouds straining many parts of dolomite and surrounded the micritized fossils. This situation ends the deposition of the Farrud Member in most of the studied wells. On the other hand, the facies in the northern part of the Concession -11 field indicates deposition in a deeper marine setting than in the southern facies.

Keywords: Farrud and Mabruk members, paleocene, microfacies associations, diagenesis, sea level oscillation, depositional environments

Procedia PDF Downloads 78
2229 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: syntactic parsing, error analysis, machine translation, deep parsing

Procedia PDF Downloads 560
2228 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain

Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji

Abstract:

A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.

Keywords: frying, moisture loss, modelling, oil uptake

Procedia PDF Downloads 450
2227 Research on the Detection Method of Helmet Wearing in Construction Site Based on Deep Learning

Authors: Afaq Ahmad, Yifei Wang, Muhammad Kashif

Abstract:

This paper addresses the rising safety accidents in China's construction industry by focusing on detecting safety helmet usage among workers using deep learning techniques. It enhances existing datasets through the collection of construction site images and merges them with public datasets to create a diverse sample library. An improved Cascade R-CNN algorithm is developed, incorporating a Swin Transformer for better feature extraction, ROI Align for detecting small and occluded targets, and Gaussian weighted Soft-NMS to reduce redundant detections. The model, trained on the "My-SHWD" dataset, achieved a mean Average Precision of 92.66%, showcasing strong performance. Additionally, a helmet detection system was designed for testing images, videos, and live feeds, demonstrating reliability and stability in practical applications.

Keywords: deep learning, safety helmet-wearing detection, cascade R-CNN, swin transformer

Procedia PDF Downloads 5
2226 Native Point Defects in ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani

Abstract:

Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.

Keywords: DFT, native, n-type, ZnO

Procedia PDF Downloads 595
2225 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation

Procedia PDF Downloads 180
2224 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 127
2223 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 200
2222 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
2221 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: baby care system, Internet of Things, deep learning, machine vision

Procedia PDF Downloads 225
2220 Exceptional Cost and Time Optimization with Successful Leak Repair and Restoration of Oil Production: West Kuwait Case Study

Authors: Nasser Al-Azmi, Al-Sabea Salem, Abu-Eida Abdullah, Milan Patra, Mohamed Elyas, Daniel Freile, Larisa Tagarieva

Abstract:

Well intervention was done along with Production Logging Tools (PLT) to detect sources of water, and to check well integrity for two West Kuwait oil wells started to produce 100 % water. For the first well, to detect the source of water, PLT was performed to check the perforations, no production observed from the bottom two perforation intervals, and an intake of water was observed from the top most perforation. Then a decision was taken to extend the PLT survey from tag depth to the Y-tool. For the second well, the aim was to detect the source of water and if there was a leak in the 7’’liner in front of the upper zones. Data could not be recorded in flowing conditions due to the casing deformation at almost 8300 ft. For the first well from the interpretation of PLT and well integrity data, there was a hole in the 9 5/8'' casing from 8468 ft to 8494 ft producing almost the majority of water, which is 2478 bbl/d. The upper perforation from 10812 ft to 10854 ft was taking 534 stb/d. For the second well, there was a hole in the 7’’liner from 8303 ft MD to 8324 ft MD producing 8334.0 stb/d of water with an intake zone from10322.9-10380.8 ft MD taking the whole fluid. To restore the oil production, W/O rig was mobilized to prevent dump flooding, and during the W/O, the leaking interval was confirmed for both wells. The leakage was cement squeezed and tested at 900-psi positive pressure and 500-psi drawdown pressure. The cement squeeze job was successful. After W/O, the wells kept producing for cleaning, and eventually, the WC reduced to 0%. Regular PLT and well integrity logs are required to study well performance, and well integrity issues, proper cement behind casing is essential to well longevity and well integrity, and the presence of the Y-tool is essential as monitoring of well parameters and ESP to facilitate well intervention tasks. Cost and time optimization in oil and gas and especially during rig operations is crucial. PLT data quality and the accuracy of the interpretations contributed a lot to identify the leakage interval accurately and, in turn, saved a lot of time and reduced the repair cost with almost 35 to 45 %. The added value here was more related to the cost reduction and effective and quick proper decision making based on the economic environment.

Keywords: leak, water shut-off, cement, water leak

Procedia PDF Downloads 117
2219 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
2218 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 101