Search results for: automated facial recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2675

Search results for: automated facial recognition

2435 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 79
2434 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 78
2433 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
2432 Laban Movement Analysis Using Kinect

Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning

Procedia PDF Downloads 341
2431 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: k-nearest neighbor (knn), face detection, vitiligo, bone deformity

Procedia PDF Downloads 163
2430 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
2429 Human Gait Recognition Using Moment with Fuzzy

Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain

Abstract:

A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.

Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments

Procedia PDF Downloads 758
2428 High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses

Authors: A. Natali, F. V. Lippi, F. Morelli, W. Salvatore, J. H. M. De Paula Filho, P. Pol

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels.

Keywords: steel racks, automated rack supported warehouse, thin-walled cold-formed elements, high strength steel, structural optimization

Procedia PDF Downloads 157
2427 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction

Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar

Abstract:

Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.

Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation

Procedia PDF Downloads 143
2426 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM fraud, e-banking, prototyping

Procedia PDF Downloads 322
2425 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 101
2424 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 20
2423 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)

Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss

Abstract:

In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.

Keywords: recognition, handwriting, Arabic text, HMMs, embedded training

Procedia PDF Downloads 354
2422 Driver Take-Over Time When Resuming Control from Highly Automated Driving in Truck Platooning Scenarios

Authors: Bo Zhang, Ellen S. Wilschut, Dehlia M. C. Willemsen, Marieke H. Martens

Abstract:

With the rapid development of intelligent transportation systems, automated platooning of trucks is drawing increasing interest for its beneficial effects on safety, energy consumption and traffic flow efficiency. Nevertheless, one major challenge lies in the safe transition of control from the automated system back to the human drivers, especially when they have been inattentive after a long period of highly automated driving. In this study, we investigated driver take-over time after a system initiated request to leave the platooning system Virtual Tow Bar in a non-critical scenario. 22 professional truck drivers participated in the truck driving simulator experiment, and each was instructed to drive under three experimental conditions before the presentation of the take-over request (TOR): driver ready (drivers were instructed to monitor the road constantly), driver not-ready (drivers were provided with a tablet) and eye-shut. The results showed significantly longer take-over time in both driver not-ready and eye-shut conditions compared with the driver ready condition. Further analysis revealed hand movement time as the main factor causing long response time in the driver not-ready condition, while in the eye-shut condition, gaze reaction time also influenced the total take-over time largely. In addition to comparing the means, large individual differences can be found especially in two driver, not attentive conditions. The importance of a personalized driver readiness predictor for a safe transition is concluded.

Keywords: driving simulation, highly automated driving, take-over time, transition of control, truck platooning

Procedia PDF Downloads 253
2421 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 102
2420 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 368
2419 Applying Big Data to Understand Urban Design Quality: The Correlation between Social Activities and Automated Pedestrian Counts in Dilworth Park, Philadelphia

Authors: Jae Min Lee

Abstract:

Presence of people and intensity of activities have been widely accepted as an indicator for successful public spaces in urban design literature. This study attempts to predict the qualitative indicators, presence of people and intensity of activities, with the quantitative measurements of pedestrian counting. We conducted participant observation in Dilworth Park, Philadelphia to collect the total number of people and activities in the park. Then, the participant observation data is compared with detailed pedestrian counts at 10 exit locations to estimate the number of park users. The study found that there is a clear correlation between the intensity of social activities and automated pedestrian counts.

Keywords: automated pedestrian count, computer vision, public space, urban design

Procedia PDF Downloads 401
2418 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study

Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo

Abstract:

The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.

Keywords: electronic, banking, automated teller machines, mobile, deposit

Procedia PDF Downloads 53
2417 The Differential Role of Written Corrective Feedback in L2 Students’ Noticing and Its Impact on Writing Scores

Authors: Khaled ElEbyary, Ramy Shabara

Abstract:

L2 research has generally acknowledged the role of noticing in language learning. The role of teacher feedback is to trigger learners’ noticing of errors and direct the writing process. Recently L2 learners are seemingly using computerized applications which provide corrective feedback (CF) at different stages of writing (i.e., during and after writing). This study aimed principally to answer the question, “Is noticing likely to be maximized when feedback on erroneous output is electronically provided either during or after the composing stage, or does teacher annotated feedback have a stronger effect?”. Seventy-five participants were randomly distributed into four groups representing four conditions. These include receiving automated feedback at the composing stage, automated feedback after writing, teacher feedback, and no feedback. Findings demonstrate the impact of CF on writing and the intensity of noticing certain language areas at different writing stages and from different feedback sources.

Keywords: written corrective feedback, error correction, noticing, automated written corrective feedback, L2 acquisition

Procedia PDF Downloads 96
2416 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System

Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky

Abstract:

A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.

Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system

Procedia PDF Downloads 132
2415 Fitness Action Recognition Based on MediaPipe

Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin

Abstract:

MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize the human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.

Keywords: computer vision, MediaPipe, adaptive boosting, fast dynamic time warping

Procedia PDF Downloads 119
2414 Words Spotting in the Images Handwritten Historical Documents

Authors: Issam Ben Jami

Abstract:

Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.

Keywords: feature matching, historical documents, pattern recognition, word spotting

Procedia PDF Downloads 274
2413 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 334
2412 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech

Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori

Abstract:

Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.

Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing

Procedia PDF Downloads 132
2411 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
2410 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 218
2409 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market

Authors: Cristian Păuna

Abstract:

In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.

Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex

Procedia PDF Downloads 130
2408 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate

Authors: E. Calil, L. A. Pereira

Abstract:

The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.

Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production

Procedia PDF Downloads 163
2407 Effects of Recognition of Customer Feedback on Relationships between Emotional Labor and Job Satisfaction: Focusing On Call Centers That Offer Professional Services

Authors: Kiyoko Yoshimura, Yasunobu Kino

Abstract:

Focusing on professional call centers where workers with expertise perform services, this study aims to clarify the relationships between emotional labor and job satisfaction and the effects of recognition of customer feedback. Since the professional call center operators consist of professional license holders (qualification holders) and those who do not (non-holders), the following three points are analyzed in the two groups by using covariance structure analysis and simultaneous multi-population analysis: 1) The relationship between emotional labor and job satisfaction, 2) customer feedback and job satisfaction, and 3) The intermediation effect between the emotional labor of customer feedback and job satisfaction. The following results are obtained: i) no direct effect is found between job satisfaction and emotional labor for qualification holders and non-holders, ii) for qualification holders and non-holders, recognition of positive feedback and recognition of negative feedback had positive and negative effects on job satisfaction, respectively, iii) for qualification and non-holders, "consideration for colleagues" influences job satisfaction by recognizing positive feedback, and iv) only for qualification holders, the factors "customer-oriented emotional expression" and "emotional disharmony" have a positive and negative effect on job satisfaction, respectively, through recognition of positive feedback and recognition of negative feedback.

Keywords: call center, emotional labor, professional service, job satisfaction, customer feedback

Procedia PDF Downloads 113
2406 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 357