Search results for: Gaussian Mixture Models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8243

Search results for: Gaussian Mixture Models

8003 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: unsharp masking, blur image, sub-region gradient, image enhancement

Procedia PDF Downloads 213
8002 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mohsen Khaledian, Razali Ismail, Mehdi Saeidmanesh, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: nanostructures, electronic transport, semiconductor modeling, systems engineering

Procedia PDF Downloads 470
8001 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 147
8000 Analysis of Tactile Perception of Textiles by Fingertip Skin Model

Authors: Izabela L. Ciesielska-Wrόbel

Abstract:

This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles.

Keywords: fingertip skin models, finite element models, modelling of textiles, sensation of textiles through the skin

Procedia PDF Downloads 463
7999 Analysis of Atomic Models in High School Physics Textbooks

Authors: Meng-Fei Cheng, Wei Fneg

Abstract:

New Taiwan high school standards emphasize employing scientific models and modeling practices in physics learning. However, to our knowledge. Few studies address how scientific models and modeling are approached in current science teaching, and they do not examine the views of scientific models portrayed in the textbooks. To explore the views of scientific models and modeling in textbooks, this study investigated the atomic unit in different textbook versions as an example and provided suggestions for modeling curriculum. This study adopted a quantitative analysis of qualitative data in the atomic units of four mainstream version of Taiwan high school physics textbooks. The models were further analyzed using five dimensions of the views of scientific models (nature of models, multiple models, purpose of the models, testing models, and changing models); each dimension had three levels (low, medium, high). Descriptive statistics were employed to compare the frequency of describing the five dimensions of the views of scientific models in the atomic unit to understand the emphasis of the views and to compare the frequency of the eight scientific models’ use to investigate the atomic model that was used most often in the textbooks. Descriptive statistics were further utilized to investigate the average levels of the five dimensions of the views of scientific models to examine whether the textbooks views were close to the scientific view. The average level of the five dimensions of the eight atomic models were also compared to examine whether the views of the eight atomic models were close to the scientific views. The results revealed the following three major findings from the atomic unit. (1) Among the five dimensions of the views of scientific models, the most portrayed dimension was the 'purpose of models,' and the least portrayed dimension was 'multiple models.' The most diverse view was the 'purpose of models,' and the most sophisticated scientific view was the 'nature of models.' The least sophisticated scientific view was 'multiple models.' (2) Among the eight atomic models, the most mentioned model was the atomic nucleus model, and the least mentioned model was the three states of matter. (3) Among the correlations between the five dimensions, the dimension of 'testing models' was highly related to the dimension of 'changing models.' In short, this study examined the views of scientific models based on the atomic units of physics textbooks to identify the emphasized and disregarded views in the textbooks. The findings suggest how future textbooks and curriculum can provide a thorough view of scientific models to enhance students' model-based learning.

Keywords: atomic models, textbooks, science education, scientific model

Procedia PDF Downloads 156
7998 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study

Authors: Priya Kedia, Kiranmoy Das

Abstract:

There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.

Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution

Procedia PDF Downloads 155
7997 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 138
7996 Cash Flow Optimization on Synthetic CDOs

Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet

Abstract:

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

Keywords: synthetic collateralized debt obligation (CDO), credit default swap (CDS), cash flow optimization, probability of default, default correlation, strategies, simulation, simplex

Procedia PDF Downloads 271
7995 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 539
7994 Power MOSFET Models Including Quasi-Saturation Effect

Authors: Abdelghafour Galadi

Abstract:

In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.

Keywords: power MOSFET, drift layer, quasi-saturation effect, SPICE model

Procedia PDF Downloads 191
7993 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 128
7992 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 319
7991 Documentation Project on Boat Models from Saqqara, in the Grand Egyptian Museum

Authors: Ayman Aboelkassem, Mohamoud Ali, Rezq Diab

Abstract:

This project aims to document and preserve boat models which were discovered in the Saqqara by Czech Institute of Egyptology archeological mission at Saqqara (GEM numbers, 46007, 46008, 46009). These boat models dates back to Egyptian Old Kingdom and have been transferred to the Conservation Center of the Grand Egyptian Museum, to be displayed at the new museum.The project objectives making such boat models more visible to visitors through the use of 3D reconstructed models and high resolution photos which describe the history of using the boats during the Ancient Egyptian history. Especially, The Grand Egyptian Museum is going to exhibit the second boat of King Khufu from Old kingdom. The project goals are to document the boat models and arrange an exhibition, where such Models going to be displayed next to the Khufu Second Boat. The project shows the importance of using boats in Ancient Egypt, and connecting their usage through Ancient Egyptian periods till now. The boat models had a unique Symbolized in ancient Egypt and connect the public with their kings. The Egyptian kings allowed high ranked employees to put boat models in their tombs which has a great meaning that they hope to fellow their kings in the journey of the afterlife.

Keywords: archaeology, boat models, 3D digital tools for heritage management, museums

Procedia PDF Downloads 136
7990 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 519
7989 Effect of Mixture of Flaxseed and Pumpkin Seeds Powder on Hypercholesterolemia

Authors: Zahra Ashraf

Abstract:

Flax and pumpkin seeds are a rich source of unsaturated fatty acids, antioxidants and fiber, known to have anti-atherogenic properties. Hypercholesterolemia is a state characterized by the elevated level of cholesterol in the blood. This research was designed to study the effect of flax and pumpkin seeds powder mixture on hypercholesterolemia and body weight. Rat’s species were selected as human representative. Thirty male albino rats were divided into three groups: a control group, a CD-chol group (control diet+cholesterol) fed with 1.5% cholesterol and FP-chol group (flaxseed and pumpkin seed powder+ cholesterol) fed with 1.5% cholesterol. Flax and pumpkin seed powder mixed at proportion of (5/1) (omega-3 and omega-6). Blood samples were collected to examine lipid profile and body weight was also measured. Thus the data was subjected to analysis of variance. In CD-chol group, body weight, total cholesterol TC, triacylglycerides TG in plasma, plasma LDL-C, ratio significantly increased with a decrease in plasma HDL (good cholesterol). In FP-chol group lipid parameters and body weights were decreased significantly with an increase in HDL and decrease in LDL (bad cholesterol). The mean values of body weight, total cholesterol, triglycerides, low density lipoprotein and high density lipoproteins in FP-chol group were 240.66±11.35g, 59.60±2.20mg/dl, 50.20±1.79 mg/dl, 36.20±1.62mg/dl, 36.40±2.20 mg/dl, respectively. Flaxseed and pumpkin seeds powder mixture showed reduction in body weight, serum cholesterol, low density lipoprotein and triglycerides. While significant increase was shown in high density lipoproteins when given to hypercholesterolemic rats. Our results suggested that flax and pumpkin seed mixture has hypocholesterolemic effects which were probably mediated by polyunsaturated fatty acids (omega-3 and omega-6) present in seed mixture.

Keywords: hypercolesterolemia, omega 3 and omega 6 fatty acids, cardiovascular diseases

Procedia PDF Downloads 416
7988 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide

Authors: V. Mani Rathnam, Giridhar Madras

Abstract:

Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.

Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide

Procedia PDF Downloads 133
7987 Classification of Emotions in Emergency Call Center Conversations

Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko

Abstract:

The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.

Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning

Procedia PDF Downloads 395
7986 Effect of Compaction Method on the Mechanical and Anisotropic Properties of Asphalt Mixtures

Authors: Mai Sirhan, Arieh Sidess

Abstract:

Asphaltic mixture is a heterogeneous material composed of three main components: aggregates; bitumen and air voids. The professional experience and scientific literature categorize asphaltic mixture as a viscoelastic material, whose behavior is determined by temperature and loading rate. Properties characterization of the asphaltic mixture used under the service conditions is done by compacting and testing cylindric asphalt samples in the laboratory. These samples must resemble in a high degree internal structure of the mixture achieved in service, and the mechanical characteristics of the compacted asphalt layer in the pavement. The laboratory samples are usually compacted in temperatures between 140 and 160 degrees Celsius. In this temperature range, the asphalt has a low degree of strength. The laboratory samples are compacted using the dynamic or vibrational compaction methods. In the compaction process, the aggregates tend to align themselves in certain directions that lead to anisotropic behavior of the asphaltic mixture. This issue has been studied in the Strategic Highway Research Program (SHRP) research, that recommended using the gyratory compactor based on the assumption that this method is the best in mimicking the compaction in the service. In Israel, the Netivei Israel company is considering adopting the Gyratory Method as a replacement for the Marshall method used today. Therefore, the compatibility of the Gyratory Method for the use with Israeli asphaltic mixtures should be investigated. In this research, we aimed to examine the impact of the compaction method used on the mechanical characteristics of the asphaltic mixtures and to evaluate the degree of anisotropy in relation to the compaction method. In order to carry out this research, samples have been compacted in the vibratory and gyratory compactors. These samples were cylindrically cored both vertically (compaction wise) and horizontally (perpendicular to compaction direction). These models were tested under dynamic modulus and permanent deformation tests. The comparable results of the tests proved that: (1) specimens compacted by the vibratory compactor had higher dynamic modulus values than the specimens compacted by the gyratory compactor (2) both vibratory and gyratory compacted specimens had anisotropic behavior, especially in high temperatures. Also, the degree of anisotropy is higher in specimens compacted by the gyratory method. (3) Specimens compacted by the vibratory method that were cored vertically had the highest resistance to rutting. On the other hand, specimens compacted by the vibratory method that were cored horizontally had the lowest resistance to rutting. Additionally (4) these differences between the different types of specimens rise mainly due to the different internal arrangement of aggregates resulting from the compaction method. (5) Based on the initial prediction of the performance of the flexible pavement containing an asphalt layer having characteristics based on the results achieved in this research. It can be concluded that there is a significant impact of the compaction method and the degree of anisotropy on the strains that develop in the pavement, and the resistance of the pavement to fatigue and rutting defects.

Keywords: anisotropy, asphalt compaction, dynamic modulus, gyratory compactor, mechanical properties, permanent deformation, vibratory compactor

Procedia PDF Downloads 117
7985 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)

Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui

Abstract:

In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.

Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS

Procedia PDF Downloads 89
7984 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 16
7983 Applying Genetic Algorithm in Exchange Rate Models Determination

Authors: Mehdi Rostamzadeh

Abstract:

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.

Keywords: exchange rate, genetic algorithm, fundamental models, technical models

Procedia PDF Downloads 271
7982 Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods

Authors: Fatih Tarlak

Abstract:

Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life.

Keywords: shelf-life, growth model, predictive microbiology, simulation

Procedia PDF Downloads 209
7981 Fluoride as Obturating Material in Primary Teeth

Authors: Syed Ameer Haider Jafri

Abstract:

The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth.

Keywords: obturating material, primary teeth, root canal treatment, success rate

Procedia PDF Downloads 304
7980 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 240
7979 Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics

Authors: Sedat Yayla, Mehmet Oruc, Shakhwan Yaseen

Abstract:

Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat.

Keywords: cavitation number, computational fluid dynamics, mixture of fluid, two-phase flow, velocity of throat

Procedia PDF Downloads 398
7978 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements

Authors: Shagufta Tabassum

Abstract:

The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.

Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique

Procedia PDF Downloads 204
7977 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System

Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav

Abstract:

The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.

Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization

Procedia PDF Downloads 407
7976 Genetic Change in Escherichia coli KJ122 That Improved Succinate Production from an Equal Mixture of Xylose and Glucose

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinate, sugarcane bagasse, E. coli

Procedia PDF Downloads 387
7975 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 271
7974 Recent Trends in Supply Chain Delivery Models

Authors: Alfred L. Guiffrida

Abstract:

A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.

Keywords: delivery performance, delivery window, supply chain delivery models, supply chain performance

Procedia PDF Downloads 418