Search results for: testability modeling
1327 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods
Authors: Ehsan Sakhaei, Ali Taherabadi
Abstract:
In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model
Procedia PDF Downloads 5061326 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala
Authors: Sami Mohamed Sharif
Abstract:
The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying
Procedia PDF Downloads 611325 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 781324 A Kernel-Based Method for MicroRNA Precursor Identification
Authors: Bin Liu
Abstract:
MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine
Procedia PDF Downloads 1651323 Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation
Authors: Daniyar Bossinov
Abstract:
This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment.Keywords: non-isothermal laminar flow, waxy crude oil, stagnant zone, yield stress
Procedia PDF Downloads 351322 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model
Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee
Abstract:
Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior
Procedia PDF Downloads 1341321 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 2971320 Face Shield Design with Additive Manufacturing Practice Combating COVID-19 Pandemic
Authors: May M. Youssef
Abstract:
This article introduces a design, for additive manufacturing technology, face shield as Personal Protective Equipment from the respiratory viruses such as coronavirus 2. The face shields help to reduce ocular exposure and play a vital role in diverting away from the respiratory COVID-19 air droplets around the users' face. The proposed face shield comprises three assembled polymer parts. The frame with a transparency overhead projector sheet visor is suitable for frontline health care workers and ordinary citizens. The frame design allows tightening the shield around the user’s head and permits rubber elastic straps to be used if required. That ergonomically designed with a unique face mask support used in case of wearing extra protective mask was created using computer aided design (CAD) software package. The finite element analysis (FEA) structural verification of the proposed design is performed by an advanced simulation technique. Subsequently, the prototype model was fabricated by a 3D printing using Fused Deposition Modeling (FDM) as a globally developed face shield product. This study provides a different face shield designs for global production, which showed to be suitable and effective toward supply chain shortages and frequent needs of personal protective goods during coronavirus disease and similar viruses.Keywords: additive manufacturing, Coronavirus-19, face shield, personal protective equipment, 3D printing
Procedia PDF Downloads 2081319 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology
Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong
Abstract:
This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.Keywords: energy transition, geographic information system, fossil energy, power systems
Procedia PDF Downloads 1561318 The Design and Modeling of Intelligent Learners Assistance System (ILASS)
Authors: Jelili Kunle Adedeji, Toeb Akorede Akinbola
Abstract:
The problem of vehicle mishap as a result of miscalculation, recklessness, or malfunction of some part in a vehicle is acknowledged to be a global issue. In most of the cases, it results into death or life injuries, all over the world; the issue becomes a nightmare to the stakeholders on how to curb mishaps on our roads due to these endemic factors. Hence this research typically examined the design of a device, specifically for learners that can lead to a society of intelligent vehicles (traffic) without withdrawing the driving authority from them, unlike pre-existing systems. Though ILASS shears a lot of principle with existing advance drivers assistance systems, yet there are two fundamental differences between ILASS system and existing systems. Firstly ILASS is meant to accept continuous input from the throttle at all time such that the devices will not constraint the driving process unnecessarily and ensure a change of speed at any point in time. Secondly, it made use of a variable threshold distance between the host vehicle and front vehicle which can be set by the host driver under the constraint of road maintenance agency, who communicates the minimum possible threshold for a different lane to the host vehicle. The results obtained from the simulation of the ILASS system concluded that ILASS is a good solution to road accidents, particularly road accident which occurs as a result of driving at high speed.Keywords: front-vehicle, host-speed, threshold-distance, ILASS
Procedia PDF Downloads 1851317 Locating the Best Place for Earthquake Refugee Camps by OpenSource Software: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi
Abstract:
Iran is one of the regions which are most prone for earthquakes annually having a large number of financial and mortality and financial losses. Every year around the world, a large number of people lose their home and life due to natural disasters such as earthquakes. It is necessary to provide and specify some suitable places for settling the homeless people before the occurrence of the earthquake, one of the most important factors in crisis planning and management. Some of the natural disasters can be Modeling and shown by Geospatial Information System (GIS). By using GIS, it would be possible to manage the spatial data and reach several goals by making use of the analyses existing in it. GIS has a determining role in disaster management because it can determine the best places for temporary resettling after such a disaster. In this research QuantumGIS software is used that It is an OpenSource software so that easy to access codes and It is also free. In this system, AHP method is used as decision model and to locate the best places for temporary resettling, is done based on the related organizations criteria with their weights and buffers. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Eventually, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QuantumGIS platform.Keywords: disaster management, temporary resettlement, earthquake, QuantumGIS
Procedia PDF Downloads 4011316 The Relationship between the Parameters of Laser 3D Printing of Titanium Alloy and Its Strength Properties
Authors: Lubov Magerramova, Vladimir Isakov, Michail Petrov
Abstract:
A methodology for calculating and modeling technological modes of laser 3D printing of Ti6Al4V powder alloy samples has been developed. ProXDPM320 3D printer was used. The technological model that takes into account the multifactorial influence of modes and conditions of additive cultivation on characteristics and strength properties of titanium samples has been created. Process control parameters and an order parameter, to which the others are subordinate, were established. Using the iterative method, the optimal technological parameters for the additive growth of cylindrical samples were calculated. The calculations were combined with data obtained during virtual 3D printing in the Altair Inspire software environment. The samples were subjected to short-term tensile strength tests at normal temperature on a servo-hydraulic machine “LFV-100”. As a result, deformation diagrams were constructed, and mechanical characteristics such as proportionality limit, conditional yield strength, tensile strength, elastic modulus, relative elongation, and stress at break were obtained. Comparison of these characteristics with those for the industrial alloy Ti6Al4V showed acceptable agreement. Some of the synthesized samples were subjected to laser shock treatment to increase fatigue strength. The results obtained were used to validate the mathematical model of 3D printing of titanium alloys.Keywords: additive technology, titanium alloy, numerical simulation, strength tests
Procedia PDF Downloads 121315 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts
Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez
Abstract:
Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency
Procedia PDF Downloads 811314 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering
Procedia PDF Downloads 1321313 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar
Abstract:
In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method
Procedia PDF Downloads 3531312 Vocational and Technical Educators’ Acceptance and Use of Digital Learning Environments Beyond Working Hours: Implications for Work-Life Balance and the Role of Integration Preference
Authors: Jacinta Ifeoma Obidile
Abstract:
Teachers (vocational and technical educators inclusive) use Information and Communications Technology (ICT) for tasks outside of their normal working hours. This expansion of work duties to non-work time challenges their work-life balance. However, there has been inconsistency in the results on how these relationships correlate. This, therefore, calls for further research studies to examine the moderating mechanisms of such relationships. The present study, therefore, ascertained how vocational and technical educators’ technology acceptance relates to their work-related ICT use beyond their working hours and work-life balance, as well as how their integration affects these relationships. The population of the study comprised 320 Vocational and Technical Educators from the Southeast geopolitical zone of Nigeria. Data were collected from the respondents using the structured questionnaire. The questionnaire was validated by three experts. The reliability of the study was conducted using 20 vocational and technical educators from the South who were not part of the population. The overall reliability coefficient of 0.81 was established using Cronbach’s alpha method. The data collected was analyzed using Structural equation modeling. Findings, among others, revealed that vocational and technical educators’ work-life balance was mediated by increased digital learning environment use after work hours, although reduced by social influence.Keywords: vocational and technical educators, digital learning environment, working hours, work-life balance, integration preference
Procedia PDF Downloads 711311 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises
Procedia PDF Downloads 651310 Investigating the Role of Dystrophin in Neuronal Homeostasis
Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh
Abstract:
Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport
Procedia PDF Downloads 1011309 Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim
Authors: Fatima Mehmood, Khalid Farooq
Abstract:
After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slopeKeywords: geotechnical investigation, landslide, reservoir drawdown, shear strength, slope stability
Procedia PDF Downloads 1661308 Electric Arc Furnaces as a Source of Voltage Fluctuations in the Power System
Authors: Zbigniew Olczykowski
Abstract:
The paper presents the impact of work on the electric arc furnace power grid. The arc furnace operating will be modeled at different power conditions of steelworks. The paper will describe how to determine the increase in voltage fluctuations caused by working in parallel arc furnaces. The analysis of indicators characterizing the quality of electricity recorded during several cycles of measurement made at the same time at three points grid, with different power and different short-circuit rated voltage, will be carried out. The measurements analysis presented in this paper were conducted in the mains of one of the Polish steel. The indicators characterizing the quality of electricity was recorded during several cycles of measurement while making measurements at three points of different power network short-circuit power and various voltage ratings. Measurements of power quality indices included the one-week measurement cycles in accordance with the EN-50160. Data analysis will include the results obtained during the simultaneous measurement of three-point grid. This will determine the actual propagation of interference generated by the device. Based on the model studies and measurements of quality indices of electricity we will establish the effect of a specific arc on the mains. The short-circuit power network’s minimum value will also be estimated, this is necessary to limit the voltage fluctuations generated by arc furnaces.Keywords: arc furnaces, long-term flicker, measurement and modeling of power quality, voltage fluctuations
Procedia PDF Downloads 2931307 Analytical and Numerical Investigation of Friction-Restricted Growth and Buckling of Elastic Fibers
Authors: Peter L. Varkonyi, Andras A. Sipos
Abstract:
The quasi-static growth of elastic fibers is studied in the presence of distributed contact with an immobile surface, subject to isotropic dry or viscous friction. Unlike classical problems of elastic stability modelled by autonomous dynamical systems with multiple time scales (slowly varying bifurcation parameter, and fast system dynamics), this problem can only be formulated as a non-autonomous system without time scale separation. It is found that the fibers initially converge to a trivial, straight configuration, which is later replaced by divergence reminiscent of buckling phenomena. In order to capture the loss of stability, a new definition of exponential stability against infinitesimal perturbations for systems defined over finite time intervals is developed. A semi-analytical method for the determination of the critical length based on eigenvalue analysis is proposed. The post-critical behavior of the fibers is studied numerically by using variational methods. The emerging post-critical shapes and the asymptotic behavior as length goes to infinity are identified for simple spatial distributions of growth. Comparison with physical experiments indicates reasonable accuracy of the theoretical model. Some applications from modeling plant root growth to the design of soft manipulators in robotics are briefly discussed.Keywords: buckling, elastica, friction, growth
Procedia PDF Downloads 1921306 Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin
Authors: Golaleh Ghaffari
Abstract:
A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region.Keywords: erosion, Gheshlagh dam, sediment yield, SWAT
Procedia PDF Downloads 5271305 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4201304 Modeling Factors Affecting Fertility Transition in Africa: Case of Kenya
Authors: Dennis Okora Amima Ondieki
Abstract:
Fertility transition has been identified to be affected by numerous factors. This research aimed to investigate the most real factors affecting fertility transition in Kenya. These factors were firstly extracted from the literature convened into demographic features, social, and economic features, social-cultural features, reproductive features and modernization features. All these factors had 23 factors identified for this study. The data for this study was from the Kenya Demographic and Health Surveys (KDHS) conducted in 1999-2003 and 2003-2008/9. The data was continuous, and it involved the mean birth order for the ten periods. Principal component analysis (PCA) was utilized using 23 factors. Principal component analysis conveyed religion, region, education and marital status as the real factors. PC scores were calculated for every point. The identified principal components were utilized as forecasters in the multiple regression model, with the fertility level as the response variable. The four components were found to be affecting fertility transition differently. It was found that fertility is affected positively by factors of region and marital and negatively by factors of religion and education. These four factors can be considered in the planning policy in Kenya and Africa at large.Keywords: fertility transition, principal component analysis, Kenya demographic health survey, birth order
Procedia PDF Downloads 1101303 Numerical Simulations on the Torsional Behavior of Multistory Concrete Masonry Buildings
Authors: Alvaro Jose Cordova, Hsuan Teh Hu
Abstract:
The use of concrete masonry constructions in developing countries has become very frequent, especially for domestic purpose. Most of them with asymmetric wall configurations in plan resulting in significant torsional actions when subjected to seismic loads. The study consisted on the finding of a material model for hollow unreinforced concrete masonry and a validation with experimental data found in literature. Numerical simulations were performed to 20 buildings with variations in wall distributions and heights. Results were analyzed by inspection and with a non-linear static method. The findings revealed that eccentricities as well as structure rigidities have a strong influence on the overall response of concrete masonry buildings. In addition, slab rotations depicted more accurate information about the torsional behavior than maximum versus average displacement ratios. The failure modes in low buildings were characterized by high tensile strains in the first floor. Whereas in tall buildings these strains were lowered significantly by higher compression stresses due to a higher self-weight. These tall buildings developed multiple plastic hinges along the height. Finally, the non-linear static analysis exposed a brittle response for all masonry assemblies. This type of behavior is undesired in any construction and the need for a material model for reinforced masonry is pointed out.Keywords: concrete damaged plasticity, concrete masonry, macro-modeling, nonlinear static analysis, torsional capacity
Procedia PDF Downloads 3001302 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University
Authors: Greg Turner, Bin Lu, Cheer-Sun Yang
Abstract:
As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.Keywords: agile methods, mobile apps, software process model, waterfall model
Procedia PDF Downloads 4101301 Machine Learning Algorithms for Rocket Propulsion
Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo
Abstract:
In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion
Procedia PDF Downloads 1191300 Effects of Transformational Leadership and Political Competition on Corporate Performance of Nigeria National Petroleum Corporation
Authors: Justine Ugochukwu Osuagwu, Sazali Abd Wahab
Abstract:
The performance and operation of NNPC have faced series of attacks by all stakeholders as many have observed lots of inefficiency not only on the part of the management but the staff. This has raised questions of whether their operations and performance are being seriously affected by lack of transformational leadership, and the political competition prevalent in the country. The author has applied the administrative leadership theory and institutional theory as a guide to this study and empirically relates such theories to the study. The study also has utilized the quantitative approach where questionnaires were distributed to 370 participants, and the correctly filled and returned questionnaires were used for the analysis using structural equation modeling. The path coefficient of transformational leadership to performance is strong and positive with β = 0.672; t-value = 14.245; p-value = 0.000. Also, the result found that political competition does not mediate the relationship between transformational leadership and performance of NNPC. (β = -0.008; t-value = -0.600; p- value > 0.05). However, the indirect path is all insignificant, meaning that transformational leadership has relationship with corporate performance.The study found that,while political competition does not serve as a mediator in the relationship between transformational leadership and corporate performance, these styles of leadership have a direct and positive impact on corporate performance. The direct relationship between transformational leadership and political competition was not discovered, despite the fact that political competition has a direct and significant impact, both positive and negative, on corporate performance. As a result, both political competition and transformational leadership have the potential to significantly alter corporate performance.Keywords: performance, transformational leadership, political competition, corporation performance, Nigeria national petroleum corporation
Procedia PDF Downloads 1251299 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 1001298 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 203