Search results for: numerical knowledge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10604

Search results for: numerical knowledge

7964 Measuring the Level of Knowledge of Construction Contracts Procedures: A Case Study of Botswana

Authors: Babulayi B. Wilson

Abstract:

Unsatisfactory performance of construction projects in both the industrialised and developing countries indicate that there could be several defects in construction projects phases. Notwithstanding the fact that some project defects are often conceived at the initiation phase of construction projects, insufficient knowledge of contract procedures has been identified as one of the major sources of construction disputes. Contract procedures are a set of rules that outlines the primary obligations and liabilities of parties involved in the implementation of a construction project. Engineering professional bodies often codify contract procedures into standard forms of contract such as the Institution of Civil Engineers (ICE, UK) and Association of Consulting Engineers (ACE, UK) and keep them under constant review by updating any clause to reflect any change in case law or relevant piece of legislation. Even so, it is the responsibility of a professional body or conditions of contract draftsperson to introduce contract-specific clauses that may be necessary for business efficacy but not covered in the chosen standard conditions of contract. In Botswana, the use of clients’ drafted and/or un-adapted for environment of use international forms of contract in conjunction with client-drafted pricing schedules is common. The product of the latter often impact negatively upon contractors’ claims and payments, in that, tender rates and prices can only be deemed to be sufficient if the chosen conditions of contract compliment the pricing schedule (use of standardised procurement documents). In addition, client drafted and the use of borrowed forms of contract such as FIDIC often conflict with domicile law resulting in costly disputes on the part of the client. It is upon the preceding text that the object of the research is to measure the level of knowledge of contract procedures amongst key stakeholders in the Botswana construction industry by requesting a representative sample from the industry and academia to respond to tutorial questions prepared from two commonly used forms of contract for civil works, that is, FIDIC (International Form of Contract) and ICE (UK). The questions were prepared under the following captions: (a) preparation of tender documents (b) obligations of the parties (c) contract administration; and (d) claims, variations, and valuation of variations. After ascertaining that the level of knowledge of contract procedures is insufficient among most practitioners in the Botswana construction industry, major procurement entities, and engineering institutions of learning; a guide to drafting a condition of a construction contract was developed and then validated through seminars and workshops. In the present, the effectiveness of the guide is not yet measured but feedback from seminars and workshops conducted indicates an appreciation of the guide by the majority of major construction industry stakeholders.

Keywords: contract procedures, conditions of contract, professional practice, construction law, forms of contract

Procedia PDF Downloads 176
7963 Assessing the Pre-Service and In-Service Teachers’ Continuation of Use of Technology After Participation in Professional Development

Authors: Ayoub Kafyulilo, Petra Fisser, Joke Voogt

Abstract:

This study was conducted to assess the continuation of the use of technology in science and mathematics teaching of the pre-service and in-service teachers who attended the professional development programme. It also assessed professional development, personal, institutional, and technological factors contributing to the continuous use of technology in teaching. The study involved 42 teachers, thirteen pre-service teachers, and twenty-nine in-service teachers. A mixed-method research approach was used to collect data for this study. Findings showed that the continuous use of technology in teaching after the termination of the professional development arrangement was high among the pre-service teachers, and differed for the in-service teachers. The regression model showed that knowledge and skills, access to technology and ease of use were strong predictors (R2 = 55.3%) of the teachers’ continuous use of technology after the professional development arrangement. The professional development factor did not have a direct effect on the continuous use of technology, rather had an influence on personal factors (knowledge and skills). In turn, the personal factors had influence on the institutional factors (access to technology) and technological factors (ease of use), which together had an effect on the teachers’ continuous use of technology in teaching.

Keywords: technology, professional development, teachers, science and mathematics

Procedia PDF Downloads 147
7962 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 172
7961 Analyzing Log File of Community Question Answering for Online Learning

Authors: Long Chen

Abstract:

With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.

Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training

Procedia PDF Downloads 430
7960 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 140
7959 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas

Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth

Abstract:

For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.

Keywords: emojis, problem ideas, innovation management, knowledge management

Procedia PDF Downloads 134
7958 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 57
7957 Geometric Design to Improve the Temperature

Authors: H. Ghodbane, A. A. Taleb, O. Kraa

Abstract:

This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.

Keywords: optimization, modeling, geometric design system, temperature increase

Procedia PDF Downloads 514
7956 Effect of Baffles on the Cooling of Electronic Components

Authors: O. Bendermel, C. Seladji, M. Khaouani

Abstract:

In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.

Keywords: electronic components, baffles, cooling, fluids engineering

Procedia PDF Downloads 282
7955 Instruction Program for Human Factors in Maintenance, Addressed to the People Working in Colombian Air Force Aeronautical Maintenance Area to Strengthen Operational Safety

Authors: Rafael Andres Rincon Barrera

Abstract:

Safety in global aviation plays a preponderant role in organizations that seek to avoid accidents in an attempt to preserve their most precious assets (the people and the machines). Human factors-based programs have shown to be effective in managing human-generated risks. The importance of training on human factors in maintenance has not been indifferent to the Colombian Air Force (COLAF). This research, which has a mixed quantitative, qualitative and descriptive approach, deals with its absence of structuring an instruction program in Human Factors in Aeronautical Maintenance, which serves as a tool to improve Operational Safety in the military air units of the COLAF. Research shows the trends and evolution of human factors programs in aeronautical maintenance through the analysis of a data matrix with 33 sources taken from different databases that are about the incorporation of these types of programs in the aeronautical industry in the last 20 years; as well as the improvements in the operational safety process that are presented after the implementation of these ones. Likewise, it compiles different normative guides in force from world aeronautical authorities for training in these programs, establishing a matrix of methodologies that may be applicable to develop a training program in human factors in maintenance. Subsequently, it illustrates the design, validation, and development of a human factors knowledge measurement instrument for maintenance at the COLAF that includes topics on Human Factors (HF), Safety Management System (SMS), and aeronautical maintenance regulations at the COLAF. With the information obtained, it performs the statistical analysis showing the aspects of knowledge and strengthening the staff for the preparation of the instruction program. Performing data triangulation based on the applicable methods and the weakest aspects found in the maintenance people shows a variable crossing from color coding, thus indicating the contents according to a training program for human factors in aeronautical maintenance, which are adjusted according to the competencies that are expected to be developed with the staff in a curricular format established by the COLAF. Among the most important findings are the determination that different authors are dealing with human factors in maintenance agrees that there is no standard model for its instruction and implementation, but that it must be adapted to the needs of the organization, that the Safety Culture in the Companies which incorporated programs on human factors in maintenance increased, that from the data obtained with the instrument for knowledge measurement of human factors in maintenance, the level of knowledge is MEDIUM-LOW with a score of 61.79%. And finally that there is an opportunity to improve Operational Safety for the COLAF through the implementation of the training program of human factors in maintenance for the technicians working in this area.

Keywords: Colombian air force, human factors, safety culture, safety management system, triangulation

Procedia PDF Downloads 123
7954 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements

Authors: K. Sridhar Reddy, M. Amaranatha Reddy, Nilanjan Mitra

Abstract:

Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway.

Keywords: joint behavior, short slabs, uncracked joints, undoweled joints, 3D numerical simulation

Procedia PDF Downloads 168
7953 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 183
7952 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 122
7951 Speaking of Genocide: Lithuanian 'Occupation’ Museums and Foucault's Discursive Formation

Authors: Craig Wight

Abstract:

Tourism visits to sites associated to varying degrees with death and dying have for some time inspired academic debate and research into what has come to be popularly described as ‘dark tourism’. Research to date has been based on the mobilisation of various social scientific methodologies to understand issues such as the motivations of visitors to consume dark tourism experiences and visitor interpretations of the various narratives that are part of the consumption experience. This thesis offers an alternative conceptual perspective for carrying out research into dark tourism by presenting a discourse analysis of Lithuanian occupation-themed museums using Foucault’s concept of ‘discursive formation’ from ‘Archaeology of Knowledge’. A constructivist methodology is therefore applied to locate the rhetorical representations of Lithuanian and Jewish subject positions and to identify the objects of discourse that are produced in five museums that interpret a historical era defined by occupation, the persecution of people and genocide. The discourses and consequent cultural function of these museums are examined, and the key finding of the research proposes that they authorise a particular Lithuanian individualism which marginalises the Jewish subject position and its related objects of discourse into abstraction. The thesis suggests that these museums create the possibility to undermine the ontological stability of Holocaust and the Jewish-Lithuanian subject which is produced as an anomalous, ‘non-Lithuanian’ cultural reference point. As with any Foucauldian archaeological research, it cannot be offered as something that is ‘complete’ since it captures only a partial field, or snapshot of knowledge, bound to a specific temporal and spatial context. The discourses that have been identified are perhaps part of a more elusive ‘positivity’ which is salient across a number of cultural and political surfaces which are ripe for a similar analytical approach in future. It is hoped that the study will motivate others to follow a discourse-analytical approach to research in order to further understand the critical role of museums in public culture when it comes to shaping knowledge about ‘inconvenient’ pasts.

Keywords: genocide heritage, foucault, Lithuanian tourism, discursive formatoin

Procedia PDF Downloads 223
7950 The Career Success for Female Managers: A Case Study of The Primary Education Department, Thailand

Authors: Nipon Sasithornsaowapa

Abstract:

The purposes of this research was to study the female management career success of the primary education department of Thailand. The independent variable was human capital which included three factors: family status, personality, and knowledge-skill-experience, while the important dependent variable was the career success. The population of this study included 2,179 female management officials in the department of primary education. A total of 400 female managers were interviewed and utilized as a sample group. A questionnaire was developed and used as a main tool for collecting data. Content analysis was performed to get the quantitative data. Descriptive statistics in this research was done by SPSS program. The findings revealed that family and personality factors had a high influence on the human capital and, in turn, influenced the career success of female managers. On the other hand, knowledge-skill-experience had an insignificant influence to the human capital and the female career success. In addition, the findings from the in-depth interview revealed that the majority of respondents defined career success as the satisfaction in job duties, not money and position.

Keywords: career, female managers, primary education

Procedia PDF Downloads 291
7949 Theorising Chinese as a Foreign Language Curriculum Justice in the Australian School Context

Authors: Wen Xu

Abstract:

The expansion of Confucius institutes and Chinese as a Foreign Language (CFL) education is often considered as cultural invasion and part of much bigger, if not ambitious, Chinese central government agenda among Western public opinion. The CFL knowledge and teaching practice inherent in textbooks are also harshly critiqued as failing to align with Western educational principles. This paper takes up these concerns and attempts to articulate that Confucius’s idea of ‘education without discrimination’ appears to have become synonymous with social justice touted in contemporary Australian education and policy discourses. To do so, it capitalises on Bernstein's conceptualization of classification and pedagogic rights to articulate CFL curriculum's potential of drawing in and drawing out curriculum boundaries to achieve educational justice. In this way, the potential useful knowledge of CFL constitutes a worthwhile tool to engage in a peripheral Western country’s education issues, as well as to include disenfranchised students in the multicultural Australian society. It opens spaces for critically theorising CFL curricular justice in Australian educational contexts, and makes an original contribution to scholarly argumentation that CFL curriculum has the potential of including socially and economically disenfranchised students in schooling.

Keywords: curriculum justice, Chinese as a Foreign Language curriculum, Bernstein, equity

Procedia PDF Downloads 130
7948 Fostering Positive Mindset: Grounded Theory Study of Self-Awareness in Emerging Adults

Authors: Maha Ben Salem

Abstract:

The transformative aspect of emerging adulthood brings about a development of self-processes, including changes in self-esteem and personal goals. Success in this life stage entails the emotional growth necessary to navigate the demands and challenges of college life. Understanding the concept of self-awareness within this particular age group sheds light on emerging adults’ internal world and the transformative aspect of their emotional growth. Uncovering the thoughts' processes that foster or hinder self-awareness is important to the understanding of how emerging adults learn to make themselves positive or negative. However, existing research in self-awareness has explored this phenomenon mostly using quantitative research methodology or through tying an individual’s level of self-awareness to specific actions or outcomes. Little is known about the process of how college students emerging adults notice and monitor their inner thoughts and emotions. Methodology and theoretical orientation: A grounded theory study using in-depth semi-structured interview was utilized. Nine interviews have been conducted. A constructionist framework was employed to generate a theory as for how self-awareness facilitates specific patterns of thinking in emerging adults. The choice of grounded theory emanates from a lack of knowledge regarding underlying thinking procedures and internal states that emerging adult college students navigate in an attempt to make meaning out of the new academic experience and life stage. Findings: Initial data analysis generated the following categories of the theory: (a) a non-judgmental perception of negative thinking and negative emotions that allow for a better understanding of the self; (b) negative state of mind is easy to overcome when it is accepted and acknowledged; (c) knowledge of the actual and desired self-generates an intentional decision to shift to a positive mindset. Preliminary findings indicate that college academic and social environment foster a new understanding of the self that yield a change in mindset and in self-knowledge.

Keywords: college environment, emergent adults, grounded theory, positive mindset, self-awareness

Procedia PDF Downloads 116
7947 Attitudes, Knowledge and Perceptions towards Cervical Cancer Messages among Female University Students

Authors: Anne Nattembo

Abstract:

Cervical cancer remains a major public health problem in developing countries, especially in Africa. Effective cervical cancer prevention communication requires identification of behaviors, attitudes and increasing awareness of a given population; thus this study focused on investigating awareness, attitudes, and behavior among female university students towards cervical cancer messages. The study objectives sought to investigate the communication behavior of young adults towards cervical cancer, to understand female students recognition of cervical cancer as a problem, to identify the frames related to cervical cancer and their impact towards audience communication and participation behaviors, to identify the factors that influence behavioral intentions and level of involvement towards cervical cancer services and to make recommendations on how to improve cervical cancer communication towards female university students. The researcher obtained data using semi-structured interviews and focus group discussions targeting 90 respondents. The semi-structured in-depth interviews were carried out through one-on-one discussions basis using a set of prepared questions among 53 respondents. All interviews were audio-tape recorded. Each interview was directly typed into Microsoft Word. 4 focus group discussions were conducted with a total of 37 respondents; 2 female only groups with 10 respondents in one and 9 respondents in another, 1 mixed with 12 participants 5 of whom were male, and 1 male only group with 6 participants. The key findings show that the participants preferred to receive and access cervical cancer information from doctors although they were mainly receiving information from the radio. In regards to the type of public the respondents represent, majority of the respondents were non-publics in the sense that they did not have knowledge about cervical cancer, had low levels of involvement and had high constraint recognition their cervical cancer knowledge levels. The researcher identified the most salient audience frames among female university students towards cervical cancer and these included; death, loss, and fear. These frames did not necessarily make cervical cancer an issue of concern among the female university students but rather an issue they distanced themselves from as they did not perceive it as a risk. The study also identified the constraints respondents face in responding to cervical cancer campaign calls-to-action which included; stigma, lack of knowledge and access to services as well as lack of recommendation from doctors. In regards to sex differences, females had more knowledge about cervical cancer than the males. In conclusion the study highlights the importance of interpersonal communication in risk or health communication with a focus on health providers proactively sharing cervical cancer prevention information with their patients. Health provider’s involvement in cervical cancer is very important in influencing behavior and compliance of cervical cancer calls-to-action. The study also provides recommendations for designing effective cervical cancer campaigns that will positively impact on the audience such as packaging cervical cancer messages that also target the males as a way of increasing their involvement and more campaigns to increase awareness of cervical cancer as well as designing positive framed messages to counter the negative audience frames towards cervical cancer.

Keywords: cervical cancer communication, health communication, university students, risk communication

Procedia PDF Downloads 210
7946 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment

Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah

Abstract:

This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.

Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control

Procedia PDF Downloads 159
7945 Evaluating and Improving Healthcare Staff Knowledge of the [NG179] NICE Guidelines on Elective Surgical Care during the COVID-19 Pandemic: A Quality Improvement Project

Authors: Stavroula Stavropoulou-Tatla, Danyal Awal, Mohammad Ayaz Hossain

Abstract:

The first wave of the COVID-19 pandemic saw several countries issue guidance postponing all non-urgent diagnostic evaluations and operations, leading to an estimated backlog of 28 million cases worldwide and over 4 million in the UK alone. In an attempt to regulate the resumption of elective surgical activity, the National Institute for Health and Care Excellence (NICE) introduced the ‘COVID-19 rapid guideline [NG179]’. This project aimed to increase healthcare staff knowledge of the aforementioned guideline to a targeted score of 100% in the disseminated questionnaire within 3 months at the Royal Free Hospital. A standardized online questionnaire was used to assess the knowledge of surgical and medical staff at baseline and following each 4-week-long Plan-Study-Do-Act (PDSA) cycle. During PDSA1, the A4 visual summary accompanying the guideline was visibly placed in all relevant clinical areas and the full guideline was distributed to the staff in charge together with a short briefing on the salient points. PDSA2 involved brief small-group teaching sessions. A total of 218 responses was collected. Mean percentage scores increased significantly from 51±19% at baseline to 81±16% after PDSA1 (t=10.32, p<0.0001) and further to 93±8% after PDSA2 (t=4.9, p<0.0001), with 54% of participants achieving a perfect score. In conclusion, the targeted distribution of guideline printouts and visual aids, combined with small-group teaching sessions, were simple and effective ways of educating healthcare staff about the new standards of elective surgical care at the time of COVID-19. This could facilitate the safe restoration of surgical activity, which is critical in order to mitigate the far-reaching consequences of surgical delays on an unprecedented scale during a time of great crisis and uncertainty.

Keywords: COVID-19, elective surgery, NICE guidelines, quality improvement

Procedia PDF Downloads 176
7944 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 73
7943 Sustainable Development and Modern Challenges of Higher Educational Institutions in the Regions of Georgia

Authors: Natia Tsiklashvili, Tamari Poladashvili

Abstract:

Education is one of the fundamental factors of economic prosperity in all respects. It is impossible to talk about the sustainable economic development of the country without substantial investments in human capital and investment into higher educational institutions. Education improves the standard of living of the population and expands the opportunities to receive more benefits, which will be equally important for both the individual and the society as a whole. There are growing initiatives among educated people such as entrepreneurship, technological development, etc. At the same time, the distribution of income between population groups is improving. The given paper discusses the scientific literature in the field of sustainable development through higher educational institutions. Scholars of economic theory emphasize a few major aspects that show the role of higher education in economic growth: a) Alongside education, human capital gradually increases which leads to increased competitiveness of the labor force, not only in the national but also in the international labor market (Neoclassical growth theory), b) The high level of education can increase the efficiency of the economy, investment in human capital, innovation, and knowledge are significant contributors to economic growth. Hence, it focuses on positive externalities and spillover effects of a knowledge-based economy which leads to economic development (endogenous growth theory), c) Education can facilitate the diffusion and transfer of knowledge. Hence, it supports macroeconomic sustainability and microeconomic conditions of individuals. While discussing the economic importance of education, we consider education as the spiritual development of the human that advances general skills, acquires a profession, and improves living conditions. Scholars agree that human capital is not only money but liquid assets, stocks, and competitive knowledge. The last one is the main lever in the context of increasing human competitiveness and high productivity. To address the local issues, the present article researched ten educational institutions across Georgia, including state and private HEIs. Qualitative research was done by analyzing in-depth interweaves of representatives from each institution, and respondents were rectors/vice-rectors/heads of quality assurance service at the institute. The result shows that there is a number of challenges that institution face in order to maintain sustainable development and be the strong links to education and the labor market. Mostly it’s contacted with bureaucracy, insufficient finances they receive, and local challenges that differ across the regions.

Keywords: higher education, higher educational institutions, sustainable development, regions, Georgia

Procedia PDF Downloads 75
7942 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank

Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong

Abstract:

Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.

Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline

Procedia PDF Downloads 393
7941 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 329
7940 The Effectiveness of Concept Mapping as a Tool for Developing Critical Thinking in Undergraduate Medical Education: A BEME Systematic Review: BEME Guide No. 81

Authors: Marta Fonseca, Pedro Marvão, Beatriz Oliveira, Bruno Heleno, Pedro Carreiro-Martins, Nuno Neuparth, António Rendas

Abstract:

Background: Concept maps (CMs) visually represent hierarchical connections among related ideas. They foster logical organization and clarify idea relationships, potentially aiding medical students in critical thinking (to think clearly and rationally about what to do or what to believe). However, there are inconsistent claims about the use of CMs in undergraduate medical education. Our three research questions are: 1) What studies have been published on concept mapping in undergraduate medical education? 2) What was the impact of CMs on students’ critical thinking? 3) How and why have these interventions had an educational impact? Methods: Eight databases were systematically searched (plus a manual and an additional search were conducted). After eliminating duplicate entries, titles, and abstracts, and full-texts were independently screened by two authors. Data extraction and quality assessment of the studies were independently performed by two authors. Qualitative and quantitative data were integrated using mixed-methods. The results were reported using the structured approach to the reporting in healthcare education of evidence synthesis statement and BEME guidance. Results: Thirty-nine studies were included from 26 journals (19 quantitative, 8 qualitative and 12 mixed-methods studies). CMs were considered as a tool to promote critical thinking, both in the perception of students and tutors, as well as in assessing students’ knowledge and/or skills. In addition to their role as facilitators of knowledge integration and critical thinking, CMs were considered both teaching and learning methods. Conclusions: CMs are teaching and learning tools which seem to help medical students develop critical thinking. This is due to the flexibility of the tool as a facilitator of knowledge integration, as a learning and teaching method. The wide range of contexts, purposes, and variations in how CMs and instruments to assess critical thinking are used increase our confidence that the positive effects are consistent.

Keywords: concept map, medical education, undergraduate, critical thinking, meaningful learning

Procedia PDF Downloads 85
7939 Factors Affecting the Quality of Life of Residents in Low-Cost Housing in Thailand

Authors: Bundit Pungnirund

Abstract:

The objectives of this research were to study the factors affecting life quality of residents who lived in the low-cost housing in Thailand. This study employed by quantitative research and the questionnaire was used to collect the data from 400 sampled of the residents in low-cost housing projects in Thailand. The descriptive statistics and multiple regression analysis were used to analyze data. The research results revealed that economic status of residents, government’s policy on dwelling places, leadership of community leaders, environmental condition of the community, and the quality of life were rated at the good level, while the participation of residents, and the knowledge and understanding of community members were rated at the high level. Furthermore, the environmental condition, the government’s policy on dwelling places, knowledge and understanding of residents, leadership of community leaders, economic status of the residents, and participation of community members had significantly affected the quality of life of residents in the low-cost housing.

Keywords: quality of life, community leadership, community participation, low-cost housing

Procedia PDF Downloads 337
7938 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 144
7937 Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, causing earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, s809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 57
7936 An Initiative for Improving Pre-Service Teachers’ Pedagogical Content Knowledge in Mathematics

Authors: Taik Kim

Abstract:

Mathematics anxiety has an important consequence for teacher practices that influence students’ attitudes and achievement. Elementary prospective teachers have the highest levels of mathematics anxiety in comparison with other college majors. In his teaching practice, the researcher developed a highly successful teaching model to reduce pre-service teachers’ higher math anxiety and simultaneously to improve their pedagogical math content knowledge. There were eighty one participants from 2015 to 2018 who took the Mathematics for Elementary Teachers I and II. As the analysis data indicated, elementary prospective teachers’ math anxiety was greatly reduced with improving their math pedagogical knowledge. U.S encounters a critical shortage of well qualified educators. To solve the issue, it is essential to engage students in a long-term commitmentto shape better teachers, who will, in turn, produce k-12 school students that are better-prepared for college students. It is imperative that new instructional strategies are implemented to improve student learning and address declining interest, poor preparedness, a lack of diverse representation, and low persistence of students in mathematics. Many four year college students take math courses from the math department in the College of Arts& Science and then take methodology courses from the College of Education. Before taking pedagogy, many students struggle in learning mathematics and lose their confidence. Since the content course focus on college level math, instead of pre service teachers’ teaching area, per se elementary math, they do not have a chance to improve their teaching skills on topics which eventually they teach. The research, a joint appointment of math and math education, has been involved in teaching content and pedagogy. As the result indicated, participants were able to math content at the same time how to teach. In conclusion, the new initiative to use several teaching strategies was able not only to increase elementary prospective teachers’ mathematical skills and knowledge but also to improve their attitude toward mathematics. We need an innovative teaching strategy which implements evidence-based tactics in redesigning a education and math to improve pre service teachers’math skills and which can improve students’ attitude toward math and students’ logical and reasoning skills. Implementation of these best practices in the local school district is particularly important because K-8 teachers are not generally familiar with lab-based instruction. At the same time, local school teachers will learn a new way how to teach math. This study can be a vital teacher education model expanding throughout the State and nationwide. In summary, this study yields invaluable information how to improve teacher education in the elementary level and, eventually, how to enhance K-8 students’ math achievement.

Keywords: quality of education and improvement method, teacher education, innovative teaching and learning methodologies, math education

Procedia PDF Downloads 94
7935 Associated Factors to Depression of the Elderly in Ladboakao Sub-District, Banpong District, Ratchaburi Province, Thailand

Authors: Yadchol Tawetanawanich

Abstract:

Depression of elderly is a mental health problem that impacts tremendously on the elderly themselves, their family, and society. the purposes of this descriptive research were to examine prevalence rate of elderly depression and to study factors related to depression in elderly including 1) individual factors: sex, education, marital status, 2) economic factors: occupation, adequate income 3) health factors: chronic illnesses , disability, 4) social factors: family relationship, community relationship, 5) knowledge of depression, and 6) self-care behavior. The subject in this study included 273 elderly in Ladboakao sub-district, Banpong district, Ratchaburi province, Thailand. Data were collected through questionnaires and were analyzed using percentage, mean, standard deviation, chi-square, and one-way ANOVA. The results of the study revealed that: The prevalence rate of elderly depression were 21.61%, factors included economic factors, health factors, knowledge about depression, and self-care behavior were statistically significant positively related to depression of elderly (p<0.05), but individual factors and social factors were not significantly related to depression. It is also important for nurses to assess factors related to depression of the elderly in order to develop the model of care and use self-care strategies to contribute the positive outcomes.

Keywords: associated factors, depression, elderly, self-care

Procedia PDF Downloads 376