Search results for: early age concrete strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8188

Search results for: early age concrete strength

5548 Design and Construction of a Solar Mobile Anaerobic Digestor for Rural Communities

Authors: César M. Moreira, Marco A. Pazmiño-Hernández, Marco A. Pazmiño-Barreno, Kyle Griffin, Pratap Pullammanappallil

Abstract:

An anaerobic digestion system that was completely operated on solar power (both photovoltaic and solar thermal energy), and mounted on a trailer to make it mobile, was designed and constructed. A 55-gallon batch digester was placed within a chamber that was heated by hot water pumped through a radiator. Hot water was produced by a solar thermal collector and photovoltaic panels charged a battery which operated pumps for recirculating water. It was found that the temperature in the heating chamber was maintained above ambient temperature but it follows the same trend as ambient temperature. The temperature difference between the chamber and ambient values was not constant but varied with time of day. Advantageously, the temperature difference was highest during night and early morning and lowest near noon. In winter, when ambient temperature dipped to 2 °C during early morning hours, the chamber temperature did not drop below 10 °C. Model simulations showed that even if the digester is subjected to diurnal variations of temperature (as observed in winter of a subtropical region), about 63 % of the waste that would have been processed under constant digester temperature of 38 °C, can still be processed. The cost of the digester system without the trailer was $1,800.

Keywords: anaerobic digestion, solar-mobile, rural communities, solar, hybrid

Procedia PDF Downloads 250
5547 Re-Framing Resilience Turn in Risk and Management with Anti-Positivistic Perspective of Holling's Early Work

Authors: Jose CanIzares

Abstract:

In the last decades, resilience has received much attention in relation to understanding and managing new forms of risk, especially in the context of urban adaptation to climate change. There are abundant concerns, however, on how to best interpret resilience and related ideas, and on whether they can guide ethically appropriate risk-related or adaptation efforts. Narrative creation and framing are critical steps in shaping public discussion and policy in large-scale interventions, since they favor or inhibit early decision and interpretation habits, which can be morally sensitive and then become persistent on time. This article adds to such framing process by contesting a conventional narrative on resilience and offering an alternative one. Conventionally, present ideas on resilience are traced to the work of ecologist C. S. Holling, especially to his article Resilience and Stability in Ecosystems. This article is usually portrayed as a contribution of complex systems thinking to theoretical ecology, where Holling appeals to resilience in order to challenge received views on ecosystem stability and the diversity-stability hypothesis. In this regard, resilience is construed as a “purely scientific”, precise and descriptive concept, denoting a complex property that allows ecosystems to persist, or to maintain functions, after disturbance. Yet, these formal features of resilience supposedly changed with Holling’s later work in the 90s, where, it is argued, Holling begun to use resilience as a more pragmatic “boundary term”, aimed at unifying transdisciplinary research about risks, ecological or otherwise, and at articulating public debate and governance strategies on the issue. In the conventional story, increased vagueness and degrees of normativity are the price to pay for this conceptual shift, which has made the term more widely usable, but also incompatible with scientific purposes and morally problematic (if not completely objectionable). This paper builds on a detailed analysis of Holling’s early work to propose an alternative narrative. The study will show that the “complexity turn” has often entangled theoretical and pragmatic aims. Accordingly, Holling’s primary aim was to fight what he termed “pathologies of natural resource management” or “pathologies of command and control management”, and so, the terms of his reform of ecosystem science are partly subordinate to the details of his proposal for reforming the management sciences. As regards resilience, Holling used it as a polysemous, ambiguous and normative term: sometimes, as an instrumental value that is closely related to various stability concepts; other times, and more crucially, as an intrinsic value and a tool for attacking efficiency and instrumentalism in management. This narrative reveals the limitations of its conventional alternative and has several practical advantages. It captures well the structure and purposes of Holling’s project, and the various roles of resilience in it. It helps to link Holling’s early work with other philosophical and ideological shifts at work in the 70s. It highlights the currency of Holling’s early work for present research and action in fields such as risk and climate adaptation. And it draws attention to morally relevant aspects of resilience that the conventional narrative neglects.

Keywords: resilience, complexity turn, risk management, positivistic, framing

Procedia PDF Downloads 154
5546 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 210
5545 Estimations of Spectral Dependence of Tropospheric Aerosol Single Scattering Albedo in Sukhothai, Thailand

Authors: Siriluk Ruangrungrote

Abstract:

Analyses of available data from MFR-7 measurement were performed and discussed on the study of tropospheric aerosol and its consequence in Thailand. Since, ASSA (w) is one of the most important parameters for a determination of aerosol effect on radioactive forcing. Here the estimation of w was directly determined in terms of the ratio of aerosol scattering optical depth to aerosol extinction optical depth (ωscat/ωext) without any utilization of aerosol computer code models. This is of benefit for providing the elimination of uncertainty causing by the modeling assumptions and the estimation of actual aerosol input data. Diurnal w of 5 cloudless-days in winter and early summer at 5 distinct wavelengths of 415, 500, 615, 673 and 870 nm with the consideration of Rayleigh scattering and atmospheric column NO2 and Ozone contents were investigated, respectively. Besides, the tendency of spectral dependence of ω representing two seasons was observed. The characteristic of spectral results reveals that during wintertime the atmosphere of the inland rural vicinity for the period of measurement possibly dominated with a lesser amount of soil dust aerosols loading than one in early summer. Hence, the major aerosol loading particularly in summer was subject to a mixture of both soil dust and biomass burning aerosols.

Keywords: aerosol scattering optical depth, aerosol extinction optical depth, biomass burning aerosol, soil dust aerosol

Procedia PDF Downloads 392
5544 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 396
5543 Sociodemographic Risk Factors of Cervical Cancer in Imphal, Manipur

Authors: Arundhati Devi Maibam, K. Ingocha Singh

Abstract:

Cervical cancer is preventable if detected early. Determination of risk factors is essential to plan screening programmes to prevent the disease. To study the demographic risk factors of cervical cancer among Manipuri women, information on age, marital status, educational level, monthly family income and socioeconomic status were collected through a pre-tested interview schedule. In this study, 64 incident cases registered at the RT Dept, RIMS (Regional Institute of Medical Sciences), Imphal, Manipur, India during 2008-09 participated. Data were entered in Microsoft Excel and the results were expressed in percentages. Among the 64 patients with cervical cancer, 56 (88.9%) were in the age group of 40+ years. The majority of the patients were from rural areas (68.75%) and 31.25% were from urban areas. The majority of the patients were Hindus (73%), 55(85.9%) were of low educational level, 43(67.2%) were married, and 36 (56.25%) belonged to Class IV socioeconomic status. In conclusion, if detected early, cervical cancer is preventable and curable. The potential risk factors need to be identified and women in the risk group need to be motivated for screening. Affordable screening programmes and health care resources will help in lessening the burden of the disease.

Keywords: cervical cancer, Manipuri women, RIIMS, socio-demographic risk factors

Procedia PDF Downloads 262
5542 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil

Procedia PDF Downloads 297
5541 Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands

Authors: Sara Seyfi

Abstract:

DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed.

Keywords: DDT contamination, geotechnical characteristics, petroleum contamination, sand

Procedia PDF Downloads 22
5540 Leading, Teaching and Learning “in the Middle”: Experiences, Beliefs, and Values of Instructional Leaders, Teachers, and Students in Finland, Germany, and Canada

Authors: Brandy Yee, Dianne Yee

Abstract:

Through the exploration of the lived experiences, beliefs and values of instructional leaders, teachers and students in Finland, Germany and Canada, we investigated the factors which contribute to developmentally responsive, intellectually engaging middle-level learning environments for early adolescents. Student-centred leadership dimensions, effective instructional practices and student agency were examined through the lens of current policy and research on middle-level learning environments emerging from the Canadian province of Manitoba. Consideration of these three research perspectives in the context of early adolescent learning, placed against an international backdrop, provided a previously undocumented perspective on leading, teaching and learning in the middle years. Aligning with a social constructivist, qualitative research paradigm, the study incorporated collective case study methodology, along with constructivist grounded theory methods of data analysis. Data were collected through semi-structured individual and focus group interviews and document review, as well as direct and participant observation. Three case study narratives were developed to share the rich stories of study participants, who had been selected using maximum variation and intensity sampling techniques. Interview transcript data were coded using processes from constructivist grounded theory. A cross-case analysis yielded a conceptual framework highlighting key factors that were found to be significant in the establishment of developmentally responsive, intellectually engaging middle-level learning environments. Seven core categories emerged from the cross-case analysis as common to all three countries. Within the visual conceptual framework (which depicts the interconnected nature of leading, teaching and learning in middle-level learning environments), these seven core categories were grouped into Essential Factors (student agency, voice and choice), Contextual Factors (instructional practices; school culture; engaging families and the community), Synergistic Factors (instructional leadership) and Cornerstone Factors (education as a fundamental cultural value; preservice, in-service and ongoing teacher development). In addition, sub-factors emerged from recurring codes in the data and identified specific characteristics and actions found in developmentally responsive, intellectually engaging middle-level learning environments. Although this study focused on 12 schools in Finland, Germany and Canada, it informs the practice of educators working with early adolescent learners in middle-level learning environments internationally. The authentic voices of early adolescent learners are the most important resource educators have to gauge if they are creating effective learning environments for their students. Ongoing professional dialogue and learning is essential to ensure teachers are supported in their work and develop the pedagogical practices needed to meet the needs of early adolescent learners. It is critical to balance consistency, coherence and dependability in the school environment with the necessary flexibility in order to support the unique learning needs of early adolescents. Educators must intentionally create a school culture that unites teachers, students and their families in support of a common purpose, as well as nurture positive relationships between the school and its community. A large, urban school district in Canada has implemented a school cohort-based model to begin to bring developmentally responsive, intellectually engaging middle-level learning environments to scale.

Keywords: developmentally responsive learning environments, early adolescents, middle level learning, middle years, instructional leadership, instructional practices, intellectually engaging learning environments, leadership dimensions, student agency

Procedia PDF Downloads 287
5539 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia

Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy

Abstract:

Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.

Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA

Procedia PDF Downloads 265
5538 Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante

Authors: Maria Teresa Signes Pont, Jose Juan Cortes Plana

Abstract:

Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf).

Keywords: xylella fastidiosa, almod tree, temperature, humidity, environmental model

Procedia PDF Downloads 155
5537 Challenges of Technical and Engineering Students in the Application of Scientific Cancer Knowledge to Preserve the Future Generation in Sub-Saharan Africa

Authors: K. Shaloom Mbambu, M. Pascal Tshimbalanga, K. Ruth Mutala, K. Roger Kabuya, N. Dieudonné Kabeya, Y. L. Kabeya Mukeba

Abstract:

In this article, the authors examine the even more worrying situation of girls in sub-Saharan Africa. Two-girls on five are private of Global Education, which represents a real loss to the development of communities and countries. Cultural traditions, poverty, violence, early and forced marriages, early pregnancies, and many other gender inequalities were the causes of this cancer development. Namely, "it is no more efficient development tool that is educating girls." The non-schooling of girls and their lack of supervision by liberal professions have serious consequences for the life of each of them. To improve the conditions of their inferior status, girls to men introduce poverty and health risks. Raising awareness among parents and communities on the importance of girls' education, improving children's access to school, girl-boy equality with their rights, creating income, and generating activities for girls, girls, and girls learning of liberal trades to make them self-sufficient. Organizations such as the United Nations Organization can save the children. ASEAD and the AEDA group are predicting the impact of this cancer on the development of a nation's future generation must be preserved.

Keywords: young girl, Sub-Saharan Africa, higher and vocational education, development, society, environment

Procedia PDF Downloads 242
5536 A Review of Paleo-Depositional Environment and Thermal Alteration Index of Carboniferous, Permian and Triassic of A1-9 well, NW Libya

Authors: Mohamed Ali Alrabib

Abstract:

This paper introduces a paleoenvironmental and hydrocarbon show in this well was identified in the interval of Dembaba formation to the Hassaona formation was poor to very poor oil show. And from palaeoenvironmental analysis there is neither particularly good reservoir nor source rock have been developed in the area. Recent palaeoenvironment work undertakes that the sedimentary succession in this area comprises the Upper Paleozoic rock of the Carboniferous and Permian and the Mesozoic (Triassic) sedimentary sequences. No early Paleozoic rocks have been found in this area, these rocks were eroding during the Late Carboniferous and Early Permian time. During Latest Permian and earliest Triassic time evidence for major marine transgression has occurred. From depths 5930-5940 feet, to 10800-10810 feet, the TAI of the Al Guidr, the Bir Al Jaja Al Uotia, Hebilia and the top varies between 3+ to 4-(mature-dry gas). This interval corporate the rest part of the Dembaba Formation. From depth 10800- 10810 feet, until total sediment depth (11944 feet Log) which corporate the rest of the Dembaba and underlying equivalents of the Assedjefar and M rar Formations and the underlying Indeterminate unit (Hassouna Formation) the TAI varies between 4 and 5 (dry gas-black& deformed).

Keywords: paleoenveronments, thermail index, carboniferous, Libya

Procedia PDF Downloads 406
5535 Maximum Power and Bone Variables in Young Adult Men

Authors: Anthony Khawaja, Jacques Prioux, Ghassan Maalouf, Rawad El Hage

Abstract:

The regular practice of physical activities characterized by significant mechanical stresses stimulates bone formation and improves bone mineral density (BMD) in the most solicited sites. The purpose of this study was to explore the relationships between maximum power and bone variables in a group of young adult men. Identification of new determinants of BMD, bone mineral content (BMC) and hip geometric indices in young adult men, would allow screening and early management of future cases of osteopenia and osteoporosis. Fifty-three young adult men (18 – 35yr) voluntarily participated in this study. Weight and height were measured, and body mass index was calculated. Body composition, BMC and BMD were determined for each individual by Dual-energy X-ray absorptiometry (DXA; GE Healthcare, Madison, WI) at whole body (WB), lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). FN cross-sectional area (CSA), strength index (SI), buckling ratio (BR), FN section modulus (Z), cross-sectional moment of inertia (CSMI) and L1-L4 TBS were also evaluated by DXA. The vertical jump was evaluated using a field test (sargent test). Two main parameters were retained: vertical jump performance (cm) and power (w). The subjects performed three jumps with 2 minutes of recovery between jumps. The highest vertical jump was selected. Maximum power (P max, in watts) was calculated. Maximum power was positively correlated to WB BMD (r = 0.41; p < 0.01), WB BMC (r = 0.65; p < 0.001), L1-L4 BMC (r = 0.54; p < 0.001), FN BMC (r = 0.35; p < 0.01), TH BMC (r = 0.50; p < 0.001), CSMI (r = 0.50; p < 0.001), CSA (r = 0.33; p < 0.05). Vertical jump was positively correlated to WB BMC (r = 0.31; p < 0.05), L1-L4 BMC (r = 0.40; p < 0.01), CSMI (r = 0.29; p < 0.05). The current study suggests that maximum power is a positive determinant of BMD, BMC and hip geometric indices in young adult men. In addition, it shows also that maximum power is a stronger positive determinant of bone variables than vertical jump in this population. Implementing strategies to increase maximum power in young adult men may be useful for preventing osteoporotic fractures later in life.

Keywords: bone variables, maximum power, osteopenia, osteoporosis, vertical jump, young adult men

Procedia PDF Downloads 170
5534 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 142
5533 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt

Authors: Walid El Kamash

Abstract:

Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.

Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil

Procedia PDF Downloads 365
5532 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province

Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri

Abstract:

Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.

Keywords: corn, growth period, optimization, stress

Procedia PDF Downloads 126
5531 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 146
5530 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: chickpea, drought stress, growth stage, tolerance

Procedia PDF Downloads 247
5529 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental Natural Frequency, Chromite Composite Floor System, Finite Element Method, low and high frequency floors, Comfortableness, resonance.

Procedia PDF Downloads 441
5528 Characterization of Stabilized Earth in the Construction Field

Authors: Sihem Chaibeddra, Fatoum Kharchi

Abstract:

This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material.

Keywords: behavior, characterization, construction, earth, stabilization

Procedia PDF Downloads 227
5527 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 57
5526 Study on Breakdown Voltage Characteristics of Different Types of Oils with Contaminations

Authors: C. Jouhar, B. Rajesh Kamath, M. K. Veeraiah, M. Z. Kurian

Abstract:

Since long time ago, petroleum-based mineral oils have been used for liquid insulation in high voltage equipments. Mineral oils are widely used as insulation for transmission and distribution power transformers, capacitors and other high voltage equipment. Petroleum-based insulating oils have excellent dielectric properties such as high electric field strength, low dielectric losses and good long-term performance. Due to environmental consideration, an attempt to search the alternate liquid insulation is required. The influence of particles on the voltage breakdown in insulating oil and other liquids has been recognized for many years. Particles influence both AC and DC voltage breakdown in insulating oil. Experiments are conducted under AC voltage. The breakdown process starts with a microscopic bubble, an area of large distance where ions or electrons initiate avalanches. Insulating liquids drive their dielectric strength from the much higher density compare to gases. Experiments are carried out under High Voltage AC (HVAC) in different types of oils namely castor oil, vegetable oil and mineral oil. The Breakdown Voltage (BDV) with presence of moisture and particle contamination in different types of oils is studied. The BDV of vegetable oil is better when compared to other oils without contamination. The BDV of mineral oil is better when compared to other types of oils in presence of contamination.

Keywords: breakdown voltage, high voltage AC, insulating oil, oil breakdown

Procedia PDF Downloads 319
5525 Effects of Fourth Alloying Additive on Microstructure and Mechanical Properties of Sn-Ag-Cu Alloy

Authors: Ugur Buyuk, Sevda Engin

Abstract:

Among the various alloy systems being considered as lead-free solder candidates, Sn-Ag-Cu alloys have been recognized as the most promising because of their excellent reliability and compatibility with current components. Thus, Sn-Ag-Cu alloys have recently attracted considerable attention and have been proposed by the Japanese, the EU and the US consortiums to replace conventional Sn-Pb eutectic solder. However, many problems or unknown characteristics of the Sn-Ag-Cu alloy system such as the best composition, the large undercooling in solidification, and the formation of large intermetallics still exist. It is expected that the addition of some solidification nuclei for Sn-Ag-Cu alloys will refine the solidification microstructure and will suppress undercooling.In the present work, the effects of the fourth elements, i.e., Zn, Ni, Bi, In and Co, on microstructural and mechanical properties of Sn-3.5Ag-0.9Cu lead-free solder were investigated. Sn-3.5Ag-0.9Cu-0.5X (X= Zn, Ni, Bi, In, Co (wt.)) alloys were prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upward at a constant temperature gradient and growth rates by using a Bridgman type directional solidification furnace. The microstructure, microhardness and ultimate tensile strength of alloys were measured. The effects of fourth elements on the microstructure and mechanical properties of Sn–Ag-Cu eutectic alloys were investigated. The results obtained in the present work were compared with the previous experimental results.

Keywords: lead-free solders, microhardness, microstructure, tensile strength

Procedia PDF Downloads 403
5524 Building Bricks Made of Fly-Ash Mixed with Sand or Ceramic Dust: Synthesis and a Comparative Study

Authors: Md. R. Shattique, Md. T. Zaki, Md. G. Kibria

Abstract:

Fly-ash bricks give a comprehensive solution towards recycling of fly-ash and since there is no requirement of firing to produce them, they are also eco-friendly bricks; little or no carbon-dioxide is emitted during their entire production cycle. As bricks are the most essential and widely utilized building materials in the construction industry, the significance of developing an alternate eco-friendly brick is substantial in modern times. In this paper, manufacturing and potential utilization of Fly-ash made building bricks have been studied and was found to be a prospective substitute for fired clay bricks that contribute greatly to polluting the environment. Also, a comparison between sand made and ceramic dust made Fly-ash bricks have been carried out experimentally. The ceramic dust made bricks seem to show higher compressive strength at lower unit volume weight compared to sand made Fly-ash bricks. Moreover, the water absorption capacity of ceramic dust Fly-ash bricks was lower than sand made bricks. Then finally a statistical comparison between fired clay bricks and fly-ash bricks were carried out. All the requirements for good quality building bricks are matched by the fly-ash bricks. All the facts from this study pointed out that these bricks give a new opportunity for being an alternate building material.

Keywords: coal fly-ash, ceramic dust, burnt clay bricks, sand, gypsum, absorption capacity, unit volume weight, compressive strength

Procedia PDF Downloads 405
5523 Using Indigenous Knowledge Systems in Teaching Early Literacy: A Case Study of Zambian Public Preschools

Authors: Ronald L. Kaunda

Abstract:

The education system in Zambia still bears scars of colonialism in the area of policy, curriculum and implementation. This historical context resulted in the failure by the Government of the Republic of Zambia to achieve literacy goals expected among school going children. Specifically, research shows that the use of English for initial literacy and Western based teaching methods to engage learners in literacy activities at lower levels of education including preschool has exacerbated this situation. In 2014, the Government of the Republic of Zambia implemented a new curriculum that, among others things, required preschool teachers to use local and cultural materials and familiar languages for early literacy teaching from preschool to grade 4. This paper presents findings from a study that sought to establish ways in which preschool teachers use Zambian Indigenous knowledge systems and Indigenous teaching strategies to support literacy development among preschool children. The study used Indigenous research methodology for data collection and iterative feature of Constructivist Grounded Theory (CGT) in the data collection process and analysis. This study established that, as agents of education, preschool teachers represented community adult educators because of some roles which they played beyond their academic mandate. The study further found that classrooms as venues of learning were equipped with learning corners reflecting Indigenous literacy materials and Indigenous ways of learning. Additionally, the study found that learners were more responsive to literacy lessons because of the use of familiar languages and local contextualized environments that supported their own cultural ways of learning. The study recommended that if the education system in Zambia is to be fully inclusive of Indigenous knowledge systems and cultural ways of learning, the education policy and curriculum should include conscious steps on how this should be implemented at the classroom level. The study further recommended that more diverse local literacy materials and teaching aids should be produced for use in the classroom.

Keywords: agents of learning, early literacy, indigenous knowledge systems, venues of education

Procedia PDF Downloads 149
5522 'Coping with Workplace Violence' Workshop: A Commendable Addition to the Curriculum for BA in Nursing

Authors: Ilana Margalith, Adaya Meirowitz, Sigalit Cohavi

Abstract:

Violence against health professionals by patients and their families have recently become a disturbing phenomenon worldwide, exacting psychological as well as economic tolls. Health workplaces in Israel (e.g. hospitals and H.M.O clinics) provide workshops for their employees, supplying them with coping strategies. However, these workshops do not focus on nursing students, who are also subjected to this violence. Their learning environment is no longer as protective as it used to be. Furthermore, coping with violence was not part of the curriculum for Israeli nursing students. Thus, based on human aggression theories which depict the pivotal role of the professional's correct response in preventing the onset of an aggressive response or the escalation of violence, a workshop was developed for undergraduate nursing students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel. The workshop aimed at reducing students' anxiety vis a vis the aggressive patient or family in addition to strengthening their ability to cope with such situations. The students practiced interpersonal skills, especially relevant to early detection of potential violence, as well as ‘a correct response’ reaction to the violence, thus developing the necessary steps to be implemented when encountering violence in the workplace. In order to assess the efficiency of the workshop, the participants filled out a questionnaire comprising knowledge and self-efficacy scales. Moreover, the replies of the 23 participants in this workshop were compared with those of 24 students who attended a standard course on interpersonal communication. Students' self-efficacy and knowledge were measured in both groups before and after the course. A statistically significant interaction was found between group (workshop/standard course) and time (before/after) as to the influence on students' self-efficacy (p=0.004) and knowledge (p=0.007). Nursing students, who participated in this ‘coping with workplace violence’ workshop, gained knowledge, confidence and a sense of self-efficacy with regard to workplace violence. Early detection of signs of imminent violence amongst patients or families and the prevention of its escalation, as well as the ability to manage the threatening situation when occurring, are acquired skills. Encouraging nursing students to learn and practice these skills may enhance their ability to cope with these unfortunate occurrences.

Keywords: early detection of violence, nursing students, patient aggression, self-efficacy, workplace violence

Procedia PDF Downloads 125
5521 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 515
5520 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang

Abstract:

Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.

Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship

Procedia PDF Downloads 482
5519 Development of a Novel Score for Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Hatem A. El-Mezayen, Hossam Darwesh

Abstract:

Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between vascular endothelial growth factor (VEGF) and HCC progression, we aimed to develop a novel score based on combination of VEGF and routine laboratory tests for early prediction of HCC. Methods: VEGF was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-VEGF score)=1.26 (numerical constant) + 0.05 ×AFP (U L-1)+0.038 × VEGF(ng ml-1)+0.004× INR –1.02 × Albumin (g l-1)–0.002 × Platelet count × 109 l-1 was developed. HCC-VEGF score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 4.4 (ie less than 4.4 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-VEGF score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, tumor markers

Procedia PDF Downloads 307