Search results for: dynamic systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12577

Search results for: dynamic systems

9937 Collaborative Approaches in Achieving Sustainable Private-Public Transportation Services in Inner-City Areas: A Case of Durban Minibus Taxis

Authors: Lonna Mabandla, Godfrey Musvoto

Abstract:

Transportation is a catalytic feature in cities. Transport and land use activity are interdependent and have a feedback loop between how land is developed and how transportation systems are designed and used. This recursive relationship between land use and transportation is reflected in how public transportation routes internal to the inner-city enhance accessibility, therefore creating spaces that are conducive to business activity, while the business activity also informs public transportation routes. It is for this reason that the focus of this research is on public transportation within inner-city areas where the dynamic is evident. Durban is the chosen case study where the dominating form of public transportation within the central business district (CBD) is minibus taxis. The paradox here is that minibus taxis still form part of the informal economy even though they are the leading form of public transportation in South Africa. There have been many attempts to formalise this industry to follow more regulatory practices, but minibus taxis are privately owned, therefore complicating any proposed intervention. The argument of this study is that the application of collaborative planning through a sustainable partnership between the public and private sectors will improve the social and environmental sustainability of public transportation. One of the major challenges that exist within such collaborative endeavors is power dynamics. As a result, a key focus of the study is on power relations. Practically, power relations should be observed over an extended period, specifically when the different stakeholders engage with each other, to reflect valid data. However, a lengthy data collection process was not possible to observe during the data collection phase of this research. Instead, interviews were conducted focusing on existing procedural planning practices between the inner-city minibus taxi association (South and North Beach Taxi Association), the eThekwini Transport Authority (ETA), and the eThekwini Town Planning Department. Conclusions and recommendations were then generated based on these data.

Keywords: collaborative planning, sustainability, public transport, minibus taxis

Procedia PDF Downloads 64
9936 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products

Authors: Maciej Jedrzejczyk, Karolina Marzantowicz

Abstract:

Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.

Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids

Procedia PDF Downloads 306
9935 Improvising Grid Interconnection Capabilities through Implementation of Power Electronics

Authors: Ashhar Ahmed Shaikh, Ayush Tandon

Abstract:

The swift reduction of fossil fuels from nature has crucial need for alternative energy sources to cater vital demand. It is essential to boost alternative energy sources to cover the continuously increasing demand for energy while minimizing the negative environmental impacts. Solar energy is one of the reliable sources that can generate energy. Solar energy is freely available in nature and is completely eco-friendly, and they are considered as the most promising power generating sources due to their easy availability and other advantages for the local power generation. This paper is to review the implementation of power electronic devices through Solar Energy Grid Integration System (SEGIS) to increase the efficiency. This paper will also concentrate on the future grid infrastructure and various other applications in order to make the grid smart. Development and implementation of a power electronic devices such as PV inverters and power controllers play an important role in power supply in the modern energy economy. Solar Energy Grid Integration System (SEGIS) opens pathways for promising solutions for new electronic and electrical components such as advanced innovative inverter/controller topologies and their functions, economical energy management systems, innovative energy storage systems with equipped advanced control algorithms, advanced maximum-power-point tracking (MPPT) suited for all PV technologies, protocols and the associated communications. In addition to advanced grid interconnection capabilities and features, the new hardware design results in small size, less maintenance, and higher reliability. The SEGIS systems will make the 'advanced integrated system' and 'smart grid' evolutionary processes to run in a better way. Since the last few years, there was a major development in the field of power electronics which led to more efficient systems and reduction of the cost per Kilo-watt. The inverters became more efficient and had reached efficiencies in excess of 98%, and commercial solar modules have reached almost 21% efficiency.

Keywords: solar energy grid integration systems, smart grid, advanced integrated system, power electronics

Procedia PDF Downloads 188
9934 Fluid Flow and Heat Transfer Characteristics Investigation in Spray Cooling Systems Using Nanofluids

Authors: Lee Derk Huan, Nur Irmawati

Abstract:

This paper aims to investigate the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: numerical investigation, spray cooling, heat transfer, nanofluids

Procedia PDF Downloads 470
9933 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 393
9932 A Unified Approach to Support the Coordination of Usability Work in Agile Software Development

Authors: Fouad Abdulameer Salman, Aziz Bin Deraman, Masita Binti Abdul Jalil

Abstract:

Usability evaluation is essential for developing usable software systems, yet its integration within agile software development remains a challenging interdisciplinary endeavour. In this paper, the authors present a study to investigate obstacles of such integration from the management perspective. The study incorporates two methods, namely an online questionnaire survey and a series of interviews with participants that answered the questionnaire. Based on the obtained results, a unified approach is proposed for enabling coordinate the efforts of agile developers and usability engineers to produce usable software systems.

Keywords: usability, usability evaluation, software development process, usability management

Procedia PDF Downloads 462
9931 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 583
9930 Development of Modular Shortest Path Navigation System

Authors: Nalinee Sophatsathit

Abstract:

This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management.

Keywords: navigation systems, shortest path, smartphone technology, user navigation guide

Procedia PDF Downloads 342
9929 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants

Authors: Mehmet Akif Bütüner, İlhan Koşalay

Abstract:

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.

Keywords: hydroelectric, governor, anomaly detection, machine learning, regression

Procedia PDF Downloads 101
9928 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

Authors: Hina Kausher, Sangita Srivastava

Abstract:

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments

Procedia PDF Downloads 137
9927 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: earthquake early warning, on-site, seismometer location, support vector machine

Procedia PDF Downloads 247
9926 Measuring Business Strategy and Information Systems Alignment

Authors: Amit Saraswat, Ruchi Tewari

Abstract:

Purpose: The research paper aims at understanding the alignment of business and IT in the Indian context and the business value attached to such an alignment. Methodology: The study is conducted in two stages. Stage one: Bibliographic research was conducted to evolve the parameters for defining alignment. Stage two: Evolving a model for strategic alignment to conduct an empirical study. The model is defined in terms of four fundamental domains of strategic management choice – business strategy, information strategy, organizational structure, and information technology structure. A survey through a questionnaire was conducted across organizations from 4 different industries and Structure Equation Modelling (SEM) technique is used for validating the model. Findings: In the Indian scenario all the subscales of alignment could not be validated. It could be validated that organizational strategy impacts information strategy and information technology structure. Research Limitations: The study is limited to the Indian context. Business IT alignment may be culture dependent so further research is required to validate the model in other cultures. Originality/Value: In the western world several models of alignment of business strategy and information systems is available but they do not measure the extent of alignment which the current study in the Indian context. Findings of the study can be used by managers in strategizing and understanding their business and information systems needs holistically and cohesively leading to efficient use of resources and output.

Keywords: business strategy, information technology (IT), business IT alignment, SEM

Procedia PDF Downloads 392
9925 Computational Approach to Cyclin-Dependent Kinase 2 Inhibitors Design and Analysis: Merging Quantitative Structure-Activity Relationship, Absorption, Distribution, Metabolism, Excretion, and Toxicity, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mohamed Moussaoui, Mouna Baassi, Soukayna Baammi, Hatim Soufi, Mohammed Salah, Rachid Daoud, Achraf EL Allali, Mohammed Elalaoui Belghiti, Said Belaaouad

Abstract:

The present study aims to investigate the quantitative structure-activity relationship (QSAR) of a series of Thiazole derivatives reported as anticancer agents (hepatocellular carcinoma), using principally the electronic descriptors calculated by the density functional theory (DFT) method and by applying the multiple linear regression method. The developed model showed good statistical parameters (R²= 0.725, R²ₐ𝒹ⱼ= 0.653, MSE = 0.060, R²ₜₑₛₜ= 0.827, Q²𝒸ᵥ = 0.536). The energy of the highest occupied molecular orbital (EHOMO) orbital, electronic energy (TE), shape coefficient (I), number of rotatable bonds (NROT), and index of refraction (n) were revealed to be the main descriptors influencing the anti-cancer activity. Additional Thiazole derivatives were then designed and their activities and pharmacokinetic properties were predicted using the validated QSAR model. These designed molecules underwent evaluation through molecular docking (MD) and molecular dynamic (MD) simulations, with binding affinity calculated using the MMPBSA script according to a 100 ns simulation trajectory. This process aimed to study both their affinity and stability towards Cyclin-Dependent Kinase 2 (CDK2), a target protein for cancer disease treatment. The research concluded by identifying four CDK2 inhibitors - A1, A3, A5, and A6 - displaying satisfactory pharmacokinetic properties. MDs results indicated that the designed compound A5 remained stable in the active center of the CDK2 protein, suggesting its potential as an effective inhibitor for the treatment of hepatocellular carcinoma. The findings of this study could contribute significantly to the development of effective CDK2 inhibitors.

Keywords: QSAR, ADMET, Thiazole, anticancer, molecular docking, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 115
9924 Modeling of Micro-Grid System Components Using MATLAB/Simulink

Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim

Abstract:

Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.

Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling

Procedia PDF Downloads 439
9923 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters

Authors: Trevor C. Brown, David J. Miron

Abstract:

Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.

Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics

Procedia PDF Downloads 237
9922 Feasiblity of Replacing Inductive Instrument Transformers with Non-Conventional Intrument Transformers to replace

Authors: David A. Wallace, Salakjit J. Nilboworn

Abstract:

Secure and reliable transmission and distribution of electrical power is crucial in today’s ever-increasing demand for electricity. Traditional methods of protecting the electrical grid have relied on relaying systems receiving voltage and current inputs from inductive instruments transformers (IT). This method has provided robust and stable performance throughout the years. Today with the advent of new non-conventional transformers (NCIT) and sensors, the electrical landscape is changing. These new systems have to ability to provide the same electrical performance as traditional instrument transformers with the added features of data acquisition, communication, smaller footprint, lower cost and resistance to GMD/GIC events.

Keywords: non-conventional instrument transformers, digital substations, smart grids, micro-grids

Procedia PDF Downloads 84
9921 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development

Procedia PDF Downloads 247
9920 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples

Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes

Abstract:

One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.

Keywords: airport ontology, knowledge management, ontology modeling, reasoning

Procedia PDF Downloads 545
9919 Using the Yield-SAFE Model to Assess the Impacts of Climate Change on Yield of Coffee (Coffea arabica L.) Under Agroforestry and Monoculture Systems

Authors: Tesfay Gidey Bezabeh, Tânia Sofia Oliveira, Josep Crous-Duran, João H. N. Palma

Abstract:

Ethiopia's economy depends strongly on Coffea arabica production. Coffee, like many other crops, is sensitive to climate change. An urgent development and application of strategies against the negative impacts of climate change on coffee production is important. Agroforestry-based system is one of the strategies that may ensure sustainable coffee production amidst the likelihood of future impacts of climate change. This system involves the combination of trees in buffer extremes, thereby modifying microclimate conditions. This paper assessed coffee production under 1) coffee monoculture and 2) coffee grown using an agroforestry system, under a) current climate and b) two different future climate change scenarios. The study focused on two representative coffee-growing regions of Ethiopia under different soil, climate, and elevation conditions. A process-based growth model (Yield-SAFE) was used to simulate coffee production for a time horizon of 40 years. Climate change scenarios considered were representative concentration pathways (RCP) 4.5 and 8.5. The results revealed that in monoculture systems, the current coffee yields are between 1200-1250 kg ha⁻¹ yr⁻¹, with an expected decrease between 4-38% and 20-60% in scenarios RCP 4.5 and 8.5, respectively. However, in agroforestry systems, the current yields are between 1600-2200 kg ha⁻¹ yr⁻¹; the decrease was lower, ranging between 4-13% and 16-25% in RCP 4.5 and 8.5 scenarios, respectively. From the results, it can be concluded that coffee production under agroforestry systems has a higher level of resilience when facing future climate change and reinforces the idea of using this type of management in the near future for adapting climate change's negative impacts on coffee production.

Keywords: Albizia gummifera, CORDEX, Ethiopia, HADCM3 model, process-based model

Procedia PDF Downloads 123
9918 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach

Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk

Abstract:

Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.

Keywords: basketball, metabolomics, saliva, sport loadomics

Procedia PDF Downloads 119
9917 A Three Tier Secure KQML Interface with Novel Performatives

Authors: Dimple Juneja, Aarti Singh, Renu Hooda

Abstract:

Knowledge Query Manipulation Language (KQML) and FIPA ACL are two prime communication languages existing in multi agent systems (MAS). Both languages are more or less similar in terms of semantics (based on speech act theory) and offer cutting edge competition while establishing agent communication across Internet. In contrast to the fact that software agents operating on the internet are required to be more safeguarded from their counter-peer, both protocols lack security performatives. The paper proposes a three tier security interface with few novel security related performatives enhancing the basic architecture of KQML. The three levels are attestation, certification and trust establishment which enforces a tight security and hence reduces the security breeches.

Keywords: multiagent systems, KQML, FIPA ACL, performatives

Procedia PDF Downloads 414
9916 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator

Authors: J. Ritonja

Abstract:

Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.

Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification

Procedia PDF Downloads 254
9915 An Automated Business Process Management for Smart Medical Records

Authors: K. Malak, A. Nourah, S.Liyakathunisa

Abstract:

Nowadays, healthcare services are facing many challenges since they are becoming more complex and more needed. Every detail of a patient’s interactions with health care providers is maintained in Electronic Health Records (ECR) and Healthcare information systems (HIS). However, most of the existing systems are often focused on documenting what happens in manual health care process, rather than providing the highest quality patient care. Healthcare business processes and stakeholders can no longer rely on manual processes, to provide better patient care and efficient utilization of resources, Healthcare processes must be automated wherever it is possible. In this research, a detail survey and analysis is performed on the existing health care systems in Saudi Arabia, and an automated smart medical healthcare business process model is proposed. The business process management methods and rules are followed in discovering, collecting information, analysis, redesign, implementation and performance improvement analysis in terms of time and cost. From the simulation results, it is evident that our proposed smart medical records system can improve the quality of the service by reducing the time and cost and increasing efficiency

Keywords: business process management, electronic health records, efficiency, cost, time

Procedia PDF Downloads 347
9914 Fuzzy Neuro Approach for Integrated Water Management System

Authors: Stuti Modi, Aditi Kambli

Abstract:

This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.

Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution

Procedia PDF Downloads 191
9913 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process

Authors: Amir Sharahi, Reza Tehrani, Ali Mollajan

Abstract:

The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.

Keywords: allocated architecture, analytical systems engineering process, functional requirements (FRs), physical components (PCs), responsibility of a physical component, system’s stakeholders

Procedia PDF Downloads 412
9912 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 78
9911 Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology

Authors: Cao Jiayu, Lan Ximing, Huang Jingjia, Burra Venkata Durga Kumar

Abstract:

The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring.

Keywords: operating system, security, stack overflow, buffer overflow, machine learning, control-flow enforcement technology

Procedia PDF Downloads 119
9910 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 378
9909 Coordinated Renewal Planning of Civil Infrastructure Systems

Authors: Hesham Osman

Abstract:

The challenges facing aging urban infrastructure systems require a more holistic and comprehensive approach to their management. The large number of urban infrastructure renewal activities occurring in cities throughout the world leads to social, economic and environmental impacts on the communities in its vicinity. As such, a coordinated effort is required to streamline these activities. This paper presents a framework to enable temporal (time-based) coordination of water, sewer and road intervention activities. Intervention activities include routine maintenance, renewal, and replacement of physical assets. The coordination framework considers 1) Life-cycle costs, 2) Infrastructure level-of-service, and 3) Risk exposure to system operators. The model enables infrastructure asset managers to trade-off options of delaying versus bringing forward intervention activities of one system in order to be executed in conjunction with another co-located system in the right-of-way. The framework relies on a combination of meta-heuristics and goal-based optimization. In order to demonstrate the applicability of the framework, a case study for a major infrastructure corridor in Cairo, Egypt is taken as an example. Results show that the framework can be scaled-up to include other infrastructure systems located in the right-of-way like electricity, gas and telecom, provided that information can be shared among these entities.

Keywords: infrastructure, rehabilitation, construction, optimization

Procedia PDF Downloads 300
9908 Comparative Effect of Self-Myofascial Release as a Warm-Up Exercise on Functional Fitness of Young Adults

Authors: Gopal Chandra Saha, Sumanta Daw

Abstract:

Warm-up is an essential component for optimizing performance in various sports before a physical fitness training session. This study investigated the immediate comparative effect of Self-Myofascial Release through vibration rolling (VR), non-vibration rolling (NVR), and static stretching as a part of a warm-up treatment on the functional fitness of young adults. Functional fitness is a classification of training that prepares the body for real-life movements and activities. For the present study 20male physical education students were selected as subjects. The age of the subjects was ranged from 20-25 years. The functional fitness variables undertaken in the present study were flexibility, muscle strength, agility, static and dynamic balance of the lower extremity. Each of the three warm-up protocol was administered on consecutive days, i.e. 24 hr time gap and all tests were administered in the morning. The mean and SD were used as descriptive statistics. The significance of statistical differences among the groups was measured by applying ‘F’-test, and to find out the exact location of difference, Post Hoc Test (Least Significant Difference) was applied. It was found from the study that only flexibility showed significant difference among three types of warm-up exercise. The observed result depicted that VR has more impact on myofascial release in flexibility in comparison with NVR and stretching as a part of warm-up exercise as ‘p’ value was less than 0.05. In the present study, within the three means of warm-up exercises, vibration roller showed better mean difference in terms of NVR, and static stretching exercise on functional fitness of young physical education practitioners, although the results were found insignificant in case of muscle strength, agility, static and dynamic balance of the lower extremity. These findings suggest that sports professionals and coaches may take VR into account for designing more efficient and effective pre-performance routine for long term to improve exercise performances. VR has high potential to interpret into an on-field practical application means.

Keywords: self-myofascial release, functional fitness, foam roller, physical education

Procedia PDF Downloads 136