Search results for: enhancement of stall angle
179 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator
Authors: Sezer Kefeli, Sertaç Arslan
Abstract:
Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification
Procedia PDF Downloads 131178 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures
Authors: Haytam Kasem
Abstract:
The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model
Procedia PDF Downloads 239177 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang
Abstract:
Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI
Procedia PDF Downloads 268176 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings
Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof
Abstract:
False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes
Procedia PDF Downloads 306175 Environmental Literacy of Teacher Educators in Colleges of Teacher Education in Israel
Authors: Tzipi Eshet
Abstract:
The importance of environmental education as part of a national strategy to promote the environment is recognized around the world. Lecturers at colleges of teacher education have considerable responsibility, directly and indirectly, for the environmental literacy of students who will end up teaching in the school system. This study examined whether lecturers in colleges of teacher education and teacher training in Israel, are able and willing to develop among the students, environmental literacy. Capability and readiness is assessed by evaluating the level of environmental literacy dimensions that include knowledge on environmental issues, positions related to the environmental agenda and "green" patterns of behavior in everyday life. The survey included 230 lecturers from 22 state colleges coming from various sectors (secular, religious, and Arab), from different academic fields and different personal backgrounds. Firstly, the results show that the higher the commitment to environmental issues, the lower the satisfaction with the current situation. In general, the respondents show positive environmental attitudes in all categories examined, they feel that they can personally influence responsible environmental behavior of others and are able to internalize environmental education in schools and colleges; they also report positive environmental behavior. There are no significant differences between teachers of different background characteristics when it comes to behavior patterns that generate personal income funds (e.g. returning bottles for deposit). Women show a more responsible environmental behavior than men. Jewish lecturers, in most categories, show more responsible behavior than Druze and Arab lecturers; however, when referring to positions, Arabs and Druze have a better sense in their ability to influence the environmental agenda. The Knowledge test, which included 15 questions, was mostly based on basic environmental issues. The average score was adequate - 83.6. Science lecturers' environmental literacy is higher than the other lecturers significantly. The larger the environmental knowledge base is, they are more environmental in their attitudes, and they feel more responsible toward the environment. It can be concluded from the research findings, that knowledge is a fundamental basis for developing environmental literacy. Environmental knowledge has a positive effect on the development of environmental commitment that is reflected in attitudes and behavior. This conclusion is probably also true of the general public. Hence, there is a great importance to the expansion of knowledge among the general public and teacher educators in particular on environmental. From the open questions in the survey, it is evident that most of the lecturers are interested in the subject and understand the need to integrate environmental issues in the colleges, either directly by teaching courses on the environment or indirectly by integrating environmental issues in different professions as well as asking the students to set an example (such as, avoid unnecessary printing, keeping the environment clean). The curriculum at colleges should include a variety of options for the development and enhancement of environmental literacy of student teachers, but first there must be a focus on bringing their teachers to a high literacy level so they can meet the difficult and important task they face.Keywords: colleges of teacher education, environmental literacy, environmental education, teacher's teachers
Procedia PDF Downloads 284174 Strategies for Public Space Utilization
Authors: Ben Levenger
Abstract:
Social life revolves around a central meeting place or gathering space. It is where the community integrates, earns social skills, and ultimately becomes part of the community. Following this premise, public spaces are one of the most important spaces that downtowns offer, providing locations for people to be witnessed, heard, and most importantly, seamlessly integrate into the downtown as part of the community. To facilitate this, these local spaces must be envisioned and designed to meet the changing needs of a downtown, offering a space and purpose for everyone. This paper will dive deep into analyzing, designing, and implementing public space design for small plazas or gathering spaces. These spaces often require a detailed level of study, followed by a broad stroke of design implementation, allowing for adaptability. This paper will highlight how to assess needs, define needed types of spaces, outline a program for spaces, detail elements of design to meet the needs, assess your new space, and plan for change. This study will provide participants with the necessary framework for conducting a grass-roots-level assessment of public space and programming, including short-term and long-term improvements. Participants will also receive assessment tools, sheets, and visual representation diagrams. Urbanism, for the sake of urbanism, is an exercise in aesthetic beauty. An economic improvement or benefit must be attained to solidify these efforts' purpose further and justify the infrastructure or construction costs. We will deep dive into case studies highlighting economic impacts to ground this work in quantitative impacts. These case studies will highlight the financial impact on an area, measuring the following metrics: rental rates (per sq meter), tax revenue generation (sales and property), foot traffic generation, increased property valuations, currency expenditure by tenure, clustered development improvements, cost/valuation benefits of increased density in housing. The economic impact results will be targeted by community size, measuring in three tiers: Sub 10,000 in population, 10,001 to 75,000 in population, and 75,000+ in population. Through this classification breakdown, the participants can gauge the impact in communities similar to their work or for which they are responsible. Finally, a detailed analysis of specific urbanism enhancements, such as plazas, on-street dining, pedestrian malls, etc., will be discussed. Metrics that document the economic impact of each enhancement will be presented, aiding in the prioritization of improvements for each community. All materials, documents, and information will be available to participants via Google Drive. They are welcome to download the data and use it for their purposes.Keywords: downtown, economic development, planning, strategic
Procedia PDF Downloads 81173 Protecting Human Health under International Investment Law
Authors: Qiang Ren
Abstract:
In the past 20 years, under the high standard of international investment protection, there have been numerous cases of investors ignoring the host country's measures to protect human health. Examples include investment disputes triggered by the Argentine government's measures related to human health, quality, and price of drinking water under the North American Free Trade Agreement. Examples also include Philip Morris v. Australia, in which case the Australian government announced the passing of the Plain Packing of Cigarettes Act to address the threat of smoking to public health in 2010. In order to take advantage of the investment treaty protection between Hong Kong and Australia, Philip Morris Asia acquired Philip Morris Australia in February 2011 and initiated investment arbitration under the treaty before the passage of the Act in July 2011. Philip Morris claimed the Act constitutes indirect expropriation and violation of fair and equitable treatment and claimed 4.16 billion US dollars compensation. Fortunately, the case ended at the admissibility decision stage and did not enter the substantive stage. Generally, even if the host country raises a human health defense, most arbitral tribunals will rule that the host country revoke the corresponding policy and make huge compensation in accordance with the clauses in the bilateral investment treaty to protect the rights of investors. The significant imbalance in the rights and obligations of host states and investors in international investment treaties undermines the ability of host states to act in pursuit of human health and social interests beyond economic interests. This squeeze on the nation's public policy space and disregard for the human health costs of investors' activities raises the need to include human health in investment rulemaking. The current international investment law system that emphasizes investor protection fails to fully reflect the requirements of the host country for the healthy development of human beings and even often brings negative impacts to human health. At a critical moment in the reform of the international investment law system, in order to achieve mutual enhancement of investment returns and human health development, human health should play a greater role in influencing and shaping international investment rules. International investment agreements should not be limited to investment protection tools but should also be part of national development strategies to serve sustainable development and human health. In order to meet the requirements of the new sustainable development goals of the United Nations, human health should be emphasized in the formulation of international investment rules, and efforts should be made to shape a new generation of international investment rules that meet the requirements of human health and sustainable development.Keywords: human health, international investment law, Philip Morris v. Australia, investor protection
Procedia PDF Downloads 178172 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties
Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts
Abstract:
Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition
Procedia PDF Downloads 231171 Qualitative Characterization of Proteins in Common and Quality Protein Maize Corn by Mass Spectrometry
Authors: Benito Minjarez, Jesse Haramati, Yury Rodriguez-Yanez, Florencio Recendiz-Hurtado, Juan-Pedro Luna-Arias, Salvador Mena-Munguia
Abstract:
During the last decades, the world has experienced a rapid industrialization and an expanding economy favoring a demographic boom. As a consequence, countries around the world have focused on developing new strategies related to the production of different farm products in order to meet future demands. Consequently, different strategies have been developed seeking to improve the major food products for both humans and livestock. Corn, after wheat and rice, is the third most important crop globally and is the primary food source for both humans and livestock in many regions around the globe. In addition, maize (Zea mays) is an important source of protein accounting for up to 60% of the daily human protein supply. Generally, many of the cereal grains have proteins with relatively low nutritional value, when they are compared with proteins from meat. In the case of corn, much of the protein is found in the endosperm (75 to 85%) and is deficient in two essential amino acids, lysine, and tryptophan. This deficiency results in an imbalance of amino acids and low protein content; normal maize varieties have less than half of the recommended amino acids for human nutrition. In addition, studies have shown that this deficiency has been associated with symptoms of growth impairment, anemia, hypoproteinemia, and fatty liver. Due to the fact that most of the presently available maize varieties do not contain the quality and quantity of proteins necessary for a balanced diet, different countries have focused on the research of quality protein maize (QPM). Researchers have characterized QPM noting that these varieties may contain between 70 to 100% more residues of the amino acids essential for animal and human nutrition, lysine, and tryptophan, than common corn. Several countries in Africa, Latin America, as well as China, have incorporated QPM in their agricultural development plan. Large parts of these countries have chosen a specific QPM variety based on their local needs and climate. Reviews have described the breeding methods of maize and have revealed the lack of studies on genetic and proteomic diversity of proteins in QPM varieties, and their genetic relationships with normal maize varieties. Therefore, molecular marker identification using tools such as mass spectrometry may accelerate the selection of plants that carry the desired proteins with high lysine and tryptophan concentration. To date, QPM maize lines have played a very important role in alleviating the malnutrition, and better characterization of these lines would provide a valuable nutritional enhancement for use in the resource-poor regions of the world. Thus, the objectives of this study were to identify proteins in QPM maize in comparison with a common maize line as a control.Keywords: corn, mass spectrometry, QPM, tryptophan
Procedia PDF Downloads 287170 Phenomena-Based Approach for Automated Generation of Process Options and Process Models
Authors: Parminder Kaur Heer, Alexei Lapkin
Abstract:
Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.Keywords: Phenomena, Process intensification, Process models , Process options
Procedia PDF Downloads 232169 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample
Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov
Abstract:
An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography
Procedia PDF Downloads 412168 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst
Authors: Totsaporn Suwannaruang, Kitirote Wantala
Abstract:
The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation
Procedia PDF Downloads 157167 Sculpted Forms and Sensitive Spaces: Walking through the Underground in Naples
Authors: Chiara Barone
Abstract:
In Naples, the visible architecture is only what emerges from the underground. Caves and tunnels cross it in every direction, intertwining with each other. They are not natural caves but spaces built by removing what is superfluous in order to dig a form out of the material. Architects, as sculptors of space, do not determine the exterior, what surrounds the volume and in which the forms live, but an interior underground space, perceptive and sensitive, able to generate new emotions each time. It is an intracorporeal architecture linked to the body, not in its external relationships, but rather with what happens inside. The proposed aims to reflect on the design of underground spaces in the Neapolitan city. The idea is to intend the underground as a spectacular museum of the city, an opportunity to learn in situ the history of the place along an unpredictable itinerary that crosses the caves and, in certain points, emerges, escaping from the world of shadows. Starting form the analysis and the study of the many overlapping elements, the archaeological one, the geological layer and the contemporary city above, it is possible to develop realistic alternatives for underground itineraries. The objective is to define minor paths to ensure the continuity between the touristic flows and entire underground segments already investigated but now disconnected: open-air paths, which abyss in the earth, retracing historical and preserved fragments. The visitor, in this way, passes from real spaces to sensitive spaces, in which the imaginary replaces the real experience, running towards exciting and secret knowledge. To safeguard the complex framework of the historical-artistic values, it is essential to use a multidisciplinary methodology based on a global approach. Moreover, it is essential to refer to similar design projects for the archaeological underground, capable of guide action strategies, looking at similar conditions in other cities, where the project has led to an enhancement of the heritage in the city. The research limits the field of investigation, by choosing the historic center of Naples, applying bibliographic and theoretical research to a real place. First of all, it’s necessary to deepen the places’ knowledge understanding the potentialities of the project as a link between what is below and what is above. Starting from a scientific approach, in which theory and practice are constantly intertwined through the architectural project, the major contribution is to provide possible alternative configurations for the underground space and its relationship with the city above, understanding how the condition of transition, as passage between the below and the above becomes structuring in the design process. Starting from the consideration of the underground as both a real physical place and a sensitive place, which engages the memory, imagination, and sensitivity of a man, the research aims at identifying possible configurations and actions useful for future urban programs to make the underground a central part of the lived city, again.Keywords: underground paths, invisible ruins, imaginary, sculpted forms, sensitive spaces, Naples
Procedia PDF Downloads 103166 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures
Authors: Hamed Khosravi, Reza Eslami-Farsani
Abstract:
Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption
Procedia PDF Downloads 341165 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures
Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai
Abstract:
In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads
Procedia PDF Downloads 150164 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp
Authors: Ali Mohammed Ali Lmbash
Abstract:
The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.Keywords: smart architecture, Hatay Camp, sustainability, machine learning.
Procedia PDF Downloads 54163 Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells
Authors: N. Slepickova Kasalkova, P. Slepicka, L. Bacakova, V. Svorcik
Abstract:
Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable, semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.Keywords: poly(L-lactic acid), plasma treatment, surface characterization, cytocompatibility, human osteoblast, rat vascular smooth muscle cells, human stem cells
Procedia PDF Downloads 228162 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 253161 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles
Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş
Abstract:
Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin
Procedia PDF Downloads 288160 The Shape of the Sculptor: Exploring Psychologist’s Perceptions of a Model of Parenting Ability to Guide Intervention in Child Custody Evaluations in South Africa
Authors: Anthony R. Townsend, Robyn L. Fasser
Abstract:
This research project provides an interpretative phenomenological analysis of a proposed conceptual model of parenting ability that has been designed to offer recommendations to guide intervention in child custody evaluations in South Africa. A recent review of the literature on child custody evaluations reveals that while there have been significant and valuable shifts in the capacity of the legal system aided by mental health professionals in understanding children and family dynamics, there remains a conceptual gap regarding the nature of parenting ability. With a view to addressing this paucity of a theoretical basis for considering parenting ability, this research project reviews a dimensional model for the assessment of parenting ability by conceiving parenting ability as a combination of good parenting and parental fitness. This model serves as a conceptual framework to guide child-custody evaluation and refine intervention in such cases to better meet the best interests of the child in a manner that bridges the professional gap between parties, legal entities, and mental health professionals. Using a model of good parenting as a point of theoretical departure, this model incorporates both intra-psychic and interpersonal attributes and behaviours of parents to form an impression of parenting ability and identify areas for potential enhancement. This research, therefore, hopes to achieve the following: (1) to provide nuanced descriptions of parents’ parenting ability; (2) to describe parents’ parenting potential; (3) to provide a parenting assessment tool for investigators in forensic family matters that will enable more useful recommendations and interventions; (4) to develop a language of consensus for investigators, attorneys, judges and parents, in forensic family matters, as to what comprises parenting ability and how this can be assessed; and (5) that all of the aforementioned will serve to advance the best interests of the children involved in such litigious matters. The evaluative promise and post-assessment prospects of this model are illustrated through three interlinking data sets: (1) the results of interviews with South African psychologists about the model, (2) retrospective analysis of care and contact evaluation reports using the model to determine if different conclusions or more specific recommendations are generated with its use and (3) the results of an interview with a psychologist who piloted this model by using it in care and contact evaluation.Keywords: alienation, attachment, best interests of the child, care and contact evaluation, children’s act (38 of 2005), child custody evaluation, civil forensics, gatekeeping, good parenting, good-enough parenting, health professions council of South Africa, family law, forensic mental healthcare practitioners, parental fitness, parenting ability, parent management training, parenting plan, problem-determined system, psychotherapy, support of other child-parent relationship, voice of the child
Procedia PDF Downloads 115159 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops
Authors: Vivek Rangarajan, Kim G. Klarke
Abstract:
With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops
Procedia PDF Downloads 404158 Studies of the Reaction Products Resulted from Glycerol Electrochemical Conversion under Galvanostatic Mode
Authors: Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Patrick Cognet, Yolande Peres, Mohammed Ajeel
Abstract:
In recent years, with the decreasing supply of fossil fuel, renewable energy has received a significant demand. Biodiesel which is well known as vegetable oil based fatty acid methyl ester is an alternative fuel for diesel. It can be produced from transesterification of vegetable oils, such as palm oil, sunflower oil, rapeseed oil, etc., with methanol. During the transesterification process, crude glycerol is formed as a by-product, resulting in 10% wt of the total biodiesel production. To date, due to the fast growing of biodiesel production in worldwide, the crude glycerol supply has also increased rapidly and resulted in a significant price drop for glycerol. Therefore, extensive research has been developed to use glycerol as feedstock to produce various added-value chemicals, such as tartronic acid, mesoxalic acid, glycolic acid, glyceric acid, propanediol, acrolein etc. The industrial processes that usually involved are selective oxidation, biofermentation, esterification, and hydrolysis. However, the conversion of glycerol into added-value compounds by electrochemical approach is rarely discussed. Currently, the approach is mainly focused on the electro-oxidation study of glycerol under potentiostatic mode for cogenerating energy with other chemicals. The electro-organic synthesis study from glycerol under galvanostatic mode is seldom reviewed. In this study, the glycerol was converted into various added-value compounds by electrochemical method under galvanostatic mode. This work aimed to study the possible compounds produced from glycerol by electrochemical technique in a one-pot electrolysis cell. The electro-organic synthesis study from glycerol was carried out in a single compartment reactor for 8 hours, over the platinum cathode and anode electrodes under acidic condition. Various parameters such as electric current (1.0 A to 3.0 A) and reaction temperature (27 °C to 80 °C) were evaluated. The products obtained were characterized by using gas chromatography-mass spectroscopy equipped with an aqueous-stable polyethylene glycol stationary phase column. Under the optimized reaction condition, the glycerol conversion achieved as high as 95%. The glycerol was successfully converted into various added-value chemicals such as ethylene glycol, glycolic acid, glyceric acid, acetaldehyde, formic acid, and glyceraldehyde; given the yield of 1%, 45%, 27%, 4%, 0.7% and 5%, respectively. Based on the products obtained from this study, the reaction mechanism of this process is proposed. In conclusion, this study has successfully converted glycerol into a wide variety of added-value compounds. These chemicals are found to have high market value; they can be used in the pharmaceutical, food and cosmetic industries. This study effectively opens a new approach for the electrochemical conversion of glycerol. For further enhancement on the product selectivity, electrode material is an important parameter to be considered.Keywords: biodiesel, glycerol, electrochemical conversion, galvanostatic mode
Procedia PDF Downloads 192157 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications
Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin
Abstract:
A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors
Procedia PDF Downloads 370156 Killing for the Great Peace: An Internal Perspective on the Anti-Manchu Theme in the Taiping Movement
Authors: Zihao He
Abstract:
The majority of existing studies on the Taiping Movement (1851-1864) viewed their anti-Manchu attitudes as nationalist agendas: Taiping was aimed at revolting against the Manchu government and establishing a new political regime. To explain these aggressive and violent attitudes towards Manchu, these studies mainly found socio-economic factors and stressed the status of “being deprived”. Even the ‘demon-slaying’ narrative of the Taiping to dehumanize the Manchu tends to be viewed as a “religious tool” to achieve their political, nationalist aim. This paper argues that these studies on Taiping’s anti-Manchu attitudes and behaviors are analyzed from an external angle and have two major problems. Firstly, they distinguished “religion” from “nationalist” or “political”, focusing on the “political” nature of the movement. “Religion” and the religious experience within Taiping were largely ignored. This paper argues that there was no separable and independent “religion” in the Taiping Movement, as opposed to secular, nationalist politics. Secondly, these analyses held an external perspective on Taiping’s anti-Manchu agenda. Demonizing and killing Manchu were viewed as purely political actions. On the contrary, this paper focuses on the internal perspective of anti-Manchu narratives in the Taiping Movement. The method of this paper is mainly textual analysis, focusing on the official documents, edicts, and proclamations of the Taiping movement. It views the writing of the Taiping as a coherent narrative and rhetoric, which was attractive and convincing for its followers. In terms of the main findings, firstly, internal and external perspectives on anti-Manchu violence are different. Externally, violence was viewed as a tool and necessary process to achieve the political goal. However, internally speaking, in Taiping’s writing, violence was a result of Godlessness, which would be solved as far as the faith in God is restored in China. Having a framework of universal love among human beings as sons and daughters of the Heavenly Father and killing was forbidden, the Taiping excluded Manchus from the family of human beings and demonized them. “Demon-slaying” was not violence. It was constructed as a necessary process to achieve the Great Peace. Moreover, Taiping’s anti-Manchu violence was not merely “political.” Rather, the category “religion” and its binary opposition, “secular,” is not suitable for Taiping. A key point related to this argument is the revolutionary violence against the Manchu government, which inherited the traditional “Heavenly Mandate” model. From an internal, theological perspective, anti-Manchu was ordained and commanded by the Heavenly Father. Manchu, as a regime, was standing as a hindrance in the path toward God. Besides, Manchu was not only viewed as a regime, but they were also “demons.” Therefore, the paper examines how Manchus were dehumanized in Taiping’s writings and were situated outside of the consideration of nonviolent and love. Manchu as a regime and Manchu as demons are in a dynamic relationship. As a regime, the Manchu government was preventing Chinese people from worshipping the Heavenly Father, so they were demonized. As they were demons, killing Manchus during the revolt was justified and not viewed as being contradicted the universal love among human beings.Keywords: anti-manchu, demon-slaying, heavenly mandate, religion and violence, the taiping movement.
Procedia PDF Downloads 69155 Sugar-Induced Stabilization Effect of Protein Structure
Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata
Abstract:
Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.Keywords: hydration, protein, sugar, X-ray scattering
Procedia PDF Downloads 156154 Foreseen the Future: Human Factors Integration in European Horizon Projects
Authors: José Manuel Palma, Paula Pereira, Margarida Tomás
Abstract:
Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0
Procedia PDF Downloads 64153 The Possible Interaction between Bisphenol A, Caffeine and Epigallocatechin-3-Gallate on Neurotoxicity Induced by Manganese in Rats
Authors: Azza A. Ali, Hebatalla I. Ahmed, Asmaa Abdelaty
Abstract:
Background: Manganese (Mn) is a naturally occurring element. Exposure to high levels of Mn causes neurotoxic effects and represents an environmental risk factor. Mn neurotoxicity is poorly understood but changing of AChE activity, monoamines and oxidative stress has been established. Bisphenol A (BPA) is a synthetic compound widely used in the production of polycarbonate plastics. There is considerable debate about whether its exposure represents an environmental risk. Caffeine is one of the major contributors to the dietary antioxidants which prevent oxidative damage and may reduce the risk of chronic neurodegenerative diseases. Epigallocatechin-3-gallate is another major component of green tea and has known interactions with caffeine. It also has health-promoting effects in CNS. Objective: To evaluate the potential protective effects of Caffeine and/or EGCG against Mn-induced neurotoxicity either alone or in the presence of BPA in rats. Methods: Seven groups of rats were used and received daily for 5 weeks MnCl2.4H2O (10 mg/kg, IP) except the control group which received saline, corn oil and distilled H2O. Mn was injected either alone or in combination with each of the following: BPA (50 mg/kg, PO), caffeine (10 mg/kg, PO), EGCG (5 mg/kg, IP), caffeine + EGCG and BPA +caffeine +EGCG. All rats were examined in five behavioral tests (grid, bar, swimming, open field and Y- maze tests). Biochemical changes in monoamines, caspase-3, PGE2, GSK-3B, glutamate, acetyl cholinesterase and oxidative parameters, as well as histopathological changes in the brain, were also evaluated for all groups. Results: Mn significantly increased MDA and nitrite content as well as caspase-3, GSK-3B, PGE2 and glutamate levels while significantly decreased TAC and SOD as well as cholinesterase in the striatum. It also decreased DA, NE and 5-HT levels in the striatum and frontal cortex. BPA together with Mn enhanced oxidative stress generation induced by Mn while increased monoamine content that was decreased by Mn in rat striatum. BPA abolished neuronal degeneration induced by Mn in the hippocampus but not in the substantia nigra, striatum and cerebral cortex. Behavioral examinations showed that caffeine and EGCG co-administration had more pronounced protective effect against Mn-induced neurotoxicity than each one alone. EGCG alone or in combination with caffeine prevented neuronal degeneration in the substantia nigra, striatum, hippocampus and cerebral cortex induced by Mn while caffeine alone prevented neuronal degeneration in the substantia nigra and striatum but still showed some nuclear pyknosis in cerebral cortex and hippocampus. The marked protection of caffeine and EGCG co-administration also confirmed by the significant increase in TAC, SOD, ACHE, DA, NE and 5-HT as well as the decrease in MDA, nitrite, caspase-3, PGE2, GSK-3B, the glutamic acid in the striatum. Conclusion: Neuronal degeneration induced by Mn showed some inhibition with BPA exposure despite the enhancement in oxidative stress generation. Co-administration of EGCG and caffeine can protect against neuronal degeneration induced by Mn and improve behavioral deficits associated with its neurotoxicity. The protective effect of EGCG was more pronounced than that of caffeine even with BPA co-exposure.Keywords: manganese, bisphenol a, caffeine, epigallocatechin-3-gallate, neurotoxicity, behavioral tests, rats
Procedia PDF Downloads 228152 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT
Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi
Abstract:
Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer
Procedia PDF Downloads 84151 Stability of a Natural Weak Rock Slope under Rapid Water Drawdowns: Interaction between Guadalfeo Viaduct and Rules Reservoir, Granada, Spain
Authors: Sonia Bautista Carrascosa, Carlos Renedo Sanchez
Abstract:
The effect of a rapid drawdown is a classical scenario to be considered in slope stability under submerged conditions. This situation arises when totally or partially submerged slopes experience a descent of the external water level and is a typical verification to be done in a dam engineering discipline, as reservoir water levels commonly fluctuate noticeably during seasons and due to operational reasons. Although the scenario is well known and predictable in general, site conditions can increase the complexity of its assessment and external factors are not always expected, can cause a reduction in the stability or even a failure in a slope under a rapid drawdown situation. The present paper describes and discusses the interaction between two different infrastructures, a dam and a highway, and the impact on the stability of a natural rock slope overlaid by the north abutment of a viaduct of the A-44 Highway due to the rapid drawdown of the Rules Dam, in the province of Granada (south of Spain). In the year 2011, with both infrastructures, the A-44 Highway and the Rules Dam already constructed, delivered and under operation, some movements start to be recorded in the approximation embankment and north abutment of the Guadalfeo Viaduct, included in the highway and developed to solve the crossing above the tail of the reservoir. The embankment and abutment were founded in a low-angle natural rock slope formed by grey graphic phyllites, distinctly weathered and intensely fractured, with pre-existing fault and weak planes. After the first filling of the reservoir, to a relative level of 243m, three consecutive drawdowns were recorded in the autumns 2010, 2011 and 2012, to relative levels of 234m, 232m and 225m. To understand the effect of these drawdowns in the weak rock mass strength and in its stability, a new geological model was developed, after reviewing all the available ground investigations, updating the geological mapping of the area and supplemented with an additional geotechnical and geophysical investigations survey. Together with all this information, rainfall and reservoir level evolution data have been reviewed in detail to incorporate into the monitoring interpretation. The analysis of the monitoring data and the new geological and geotechnical interpretation, supported by the use of limit equilibrium software Slide2, concludes that the movement follows the same direction as the schistosity of the phyllitic rock mass, coincident as well with the direction of the natural slope, indicating a deep-seated movement of the whole slope towards the reservoir. As part of these conclusions, the solutions considered to reinstate the highway infrastructure to the required FoS will be described, and the geomechanical characterization of these weak rocks discussed, together with the influence of water level variations, not only in the water pressure regime but in its geotechnical behavior, by the modification of the strength parameters and deformability.Keywords: monitoring, rock slope stability, water drawdown, weak rock
Procedia PDF Downloads 160150 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals
Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner
Abstract:
Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.Keywords: exercise, BDNF, schizophrenia, time-points
Procedia PDF Downloads 252