Search results for: uniform error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2787

Search results for: uniform error

207 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
206 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87
205 The Influence of Cognitive Load in the Acquisition of Words through Sentence or Essay Writing

Authors: Breno Barrreto Silva, Agnieszka Otwinowska, Katarzyna Kutylowska

Abstract:

Research comparing lexical learning following the writing of sentences and longer texts with keywords is limited and contradictory. One possibility is that the recursivity of writing may enhance processing and increase lexical learning; another possibility is that the higher cognitive load of complex-text writing (e.g., essays), at least when timed, may hinder the learning of words. In our study, we selected 2 sets of 10 academic keywords matched for part of speech, length (number of characters), frequency (SUBTLEXus), and concreteness, and we asked 90 L1-Polish advanced-level English majors to use the keywords when writing sentences, timed (60 minutes) or untimed essays. First, all participants wrote a timed Control essay (60 minutes) without keywords. Then different groups produced Timed essays (60 minutes; n=33), Untimed essays (n=24), or Sentences (n=33) using the two sets of glossed keywords (counterbalanced). The comparability of the participants in the three groups was ensured by matching them for proficiency in English (LexTALE), and for few measures derived from the control essay: VocD (assessing productive lexical diversity), normed errors (assessing productive accuracy), words per minute (assessing productive written fluency), and holistic scores (assessing overall quality of production). We measured lexical learning (depth and breadth) via an adapted Vocabulary Knowledge Scale (VKS) and a free association test. Cognitive load was measured in the three essays (Control, Timed, Untimed) using normed number of errors and holistic scores (TOEFL criteria). The number of errors and essay scores were obtained from two raters (interrater reliability Pearson’s r=.78-91). Generalized linear mixed models showed no difference in the breadth and depth of keyword knowledge after writing Sentences, Timed essays, and Untimed essays. The task-based measurements found that Control and Timed essays had similar holistic scores, but that Untimed essay had better quality than Timed essay. Also, Untimed essay was the most accurate, and Timed essay the most error prone. Concluding, using keywords in Timed, but not Untimed, essays increased cognitive load, leading to more errors and lower quality. Still, writing sentences and essays yielded similar lexical learning, and differences in the cognitive load between Timed and Untimed essays did not affect lexical acquisition.

Keywords: learning academic words, writing essays, cognitive load, english as an L2

Procedia PDF Downloads 73
204 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 238
203 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model

Authors: Jihane Bouabid

Abstract:

The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.

Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model

Procedia PDF Downloads 63
202 Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives

Authors: Alper T. Celebi, Ali Beskok

Abstract:

Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis.

Keywords: electroosmotic flow, molecular dynamics, slip length, velocity-slip

Procedia PDF Downloads 157
201 SNP g.1007A>G within the Porcine DNAL4 Gene Affects Sperm Motility Traits

Authors: I. Wiedemann, A. R. Sharifi, A. Mählmeyer, C. Knorr

Abstract:

A requirement for sperm motility is a morphologically intact flagellum with a central axoneme. The flagellar beating is caused by the varying activation and inactivation of dynein molecules which are located in the axoneme. DNAL4 (dynein, axonemal, light chain 4) is regarded as a possible functional candidate gene encoding a small subunit of the dyneins. In the present study, 5814bp of the porcine DNAL4 (GenBank Acc. No. AM284696.1, 6097 bp, 4 exons) were comparatively sequenced using three boars with a high motility (>68%) and three with a low motility (<60%). Primers were self-designed except for those covering exons 1, 2 and 3. Prior to sequencing, the PCR products were purified. Sequencing was performed with an ABI PRISM 3100 Genetic Analyzer using the BigDyeTM Terminator v3.1 Cycle Sequencing Reaction Kit. Finally, 23 SNPs were described and genotyped for 82 AI boars representing the breeds Piétrain, German Large White and German Landrace. The genotypes were used to assess possible associations with standard spermatological parameters (ejaculate volume, density, and sperm motility (undiluted (Motud), 24h (Mot1) and 48h (Mot2) after semen collection) that were regularly recorded on the AI station. The analysis included a total of 8,833 spermatological data sets which ranged from 2 to 295 sets per boar in five years. Only SNP g.1007A>G had a significant effect. Finally, the gene substitution effect using the following statistical model was calculated: Yijk= µ+αi+βj+αβij+b1Sijk+b2Aijk+b3T ijk + b4Vijk+b5(α*A)ijk +b6(β*A)ijk+b7(A*T)ijk+Uijk+eijk where Yijk is the semen characteristics, µ is the general mean, α is the main effect of breed, β is the main effect of season, S is the effect of SNP (g.1007A > G), A is the effect of age at semen collection, V is the effect of diluter, αβ, α*A, β*A, A*T are interactions between the fixed effects, b1-b7 are regression coefficients between y and the respective covariate, U is the random effect of repeated observation on animal and e is the random error. The results from the single marker regression analysis revealed highly significant effects (p < 0.0001) of SNP g.1007A > G on Mot1 resp. on Mot2, resulting in a marked reduction by 11.4% resp. 15.4%. Furthermore a loss of Motud by 4.6% was detected (p < 0.0178). Considering the SNP g.1007A > G as a main factor (dominant-recessive model), significant differences between genotypes AA and AG as well as AA and GG for Mot1 and Mot2 exist. For Motud there was a significant difference between AA and GG.

Keywords: association, DNAL4, porcine, sperm traits

Procedia PDF Downloads 460
200 Direct Phoenix Identification and Antimicrobial Susceptibility Testing from Positive Blood Culture Broths

Authors: Waad Al Saleemi, Badriya Al Adawi, Zaaima Al Jabri, Sahim Al Ghafri, Jalila Al Hadhramia

Abstract:

Objectives: Using standard lab methods, a positive blood culture requires a minimum of two days (two occasions of overnight incubation) to obtain a final identification (ID) and antimicrobial susceptibility results (AST) report. In this study, we aimed to evaluate the accuracy and precision of identification and antimicrobial susceptibility testing of an alternative method (direct method) that will reduce the turnaround time by 24 hours. This method involves the direct inoculation of positive blood culture broths into the Phoenix system using serum separation tubes (SST). Method: This prospective study included monomicrobial-positive blood cultures obtained from January 2022 to May 2023 in SQUH. Blood cultures containing a mixture of organisms, fungi, or anaerobic organisms were excluded from this study. The result of the new “direct method” under study was compared with the current “standard method” used in the lab. The accuracy and precision were evaluated for the ID and AST using Clinical and Laboratory Standards Institute (CLSI) recommendations. The categorical agreement, essential agreement, and the rates of very major errors (VME), major errors (ME), and minor errors (MIE) for both gram-negative and gram-positive bacteria were calculated. Passing criteria were set according to CLSI. Result: The results of ID and AST were available for a total of 158 isolates. Of 77 isolates of gram-negative bacteria, 71 (92%) were correctly identified at the species level. Of 70 isolates of gram-positive bacteria, 47(67%) isolates were correctly identified. For gram-negative bacteria, the essential agreement of the direct method was ≥92% when compared to the standard method, while the categorical agreement was ≥91% for all tested antibiotics. The precision of ID and AST were noted to be 100% for all tested isolates. For gram-positive bacteria, the essential agreement was >93%, while the categorical agreement was >92% for all tested antibiotics except moxifloxacin. Many antibiotics were noted to have an unacceptable higher rate of very major errors including penicillin, cotrimoxazole, clindamycin, ciprofloxacin, and moxifloxacin. However, no error was observed in the results of vancomycin, linezolid, and daptomycin. Conclusion: The direct method of ID and AST for positive blood cultures using SST is reliable for gram negative bacteria. It will significantly decrease the turnaround time and will facilitate antimicrobial stewardship.

Keywords: bloodstream infection, oman, direct ast, blood culture, rapid identification, antimicrobial susceptibility, phoenix, direct inoculation

Procedia PDF Downloads 62
199 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action

Authors: Elisabeth Unterfrauner, Christian Voigt

Abstract:

Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.

Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement

Procedia PDF Downloads 132
198 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 100
197 Genome-Wide Mining of Potential Guide RNAs for Streptococcus pyogenes and Neisseria meningitides CRISPR-Cas Systems for Genome Engineering

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system can facilitate targeted genome editing in organisms. Dual or single guide RNA (gRNA) can program the Cas9 nuclease to cut target DNA in particular areas; thus, introducing concise mutations either via error-prone non-homologous end-joining repairing or via incorporating foreign DNAs by homologous recombination between donor DNA and target area. In spite of high demand of such promising technology, developing a well-organized procedure in order for reliable mining of potential target sites for gRNAs in large genomic data is still challenging. Hence, we aimed to perform high-throughput detection of target sites by specific PAMs for not only common Streptococcus pyogenes (SpCas9) but also for Neisseria meningitides (NmCas9) CRISPR-Cas systems. Previous research confirmed the successful application of such RNA-guided Cas9 orthologs for effective gene targeting and subsequently genome manipulation. However, Cas9 orthologs need their particular PAM sequence for DNA cleavage activity. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of the target site for the two orthogonals of Cas9 protein, we created a reliable procedure to explore possible gRNA sequences. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. Finally, a complete list of all potential gRNAs along with their locations, strands, and PAMs sequence orientation can be provided for both SpCas9 as well as another potential Cas9 ortholog (NmCas9). The artificial design of potential gRNAs in a genome of interest can accelerate functional genomic studies. Consequently, the application of such novel genome editing tool (CRISPR/Cas technology) will enhance by presenting increased versatility and efficiency.

Keywords: CRISPR/Cas9 genome editing, gRNA mining, SpCas9, NmCas9

Procedia PDF Downloads 261
196 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
195 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 202
194 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit

Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 80
193 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics

Authors: Janne Engblom, Elias Oikarinen

Abstract:

A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.

Keywords: dynamic model, fixed effects, panel data, price dynamics

Procedia PDF Downloads 1507
192 Rangeland Monitoring by Computerized Technologies

Authors: H. Arzani, Z. Arzani

Abstract:

Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.

Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing

Procedia PDF Downloads 366
191 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.

Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning

Procedia PDF Downloads 181
190 Bibliometric Analysis of Risk Assessment of Inland Maritime Accidents in Bangladesh

Authors: Armana Huq, Wahidur Rahman, Sanwar Kader

Abstract:

Inland waterways in Bangladesh play an important role in providing comfortable and low-cost transportation. However, a maritime accident takes away many lives and creates unwanted hazards every year. This article deals with a comprehensive review of inland waterway accidents in Bangladesh. Additionally, it includes a comparative study between international and local inland research studies based on maritime accidents. Articles from inland waterway areas are analyzed in-depth to make a comprehensive overview of the nature of the academic work, accident and risk management process and different statistical analyses. It is found that empirical analysis based on the available statistical data dominates the research domain. For this study, major maritime accident-related works in the last four decades in Bangladesh (1981-2020) are being analyzed for preparing a bibliometric analysis. A study of maritime accidents of passenger's vessels during (1995-2005) indicates that the predominant causes of accidents in the inland waterways of Bangladesh are collision and adverse weather (77%), out of which collision due to human error alone stands (56%) of all accidents. Another study refers that the major causes of waterway accidents are the collision (60.3%) during 2005-2015. About 92% of this collision occurs due to direct contact with another vessel during this period. Rest 8% of the collision occurs by contact with permanent obstruction on waterway roots. The overall analysis of another study from the last 25 years (1995-2019) shows that one of the main types of accidents is collisions, with about 50.3% of accidents being caused by collisions. The other accident types are cyclone or storm (17%), overload (11.3%), physical failure (10.3%), excessive waves (5.1%), and others (6%). Very few notable works are available in testing or comparing the methods, proposing new methods for risk management, modeling, uncertainty treatment. The purpose of this paper is to provide an overview of the evolution of marine accident-related research domain regarding inland waterway of Bangladesh and attempts to introduce new ideas and methods to abridge the gap between international and national inland maritime-related work domain which can be a catalyst for a safer and sustainable water transportation system in Bangladesh. Another fundamental objective of this paper is to navigate various national maritime authorities and international organizations to implement risk management processes for shipping accident prevention in waterway areas.

Keywords: inland waterways, safety, bibliometric analysis, risk management, accidents

Procedia PDF Downloads 182
189 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
188 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 412
187 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
186 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case

Authors: Lukas Reznak, Maria Reznakova

Abstract:

Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.

Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany

Procedia PDF Downloads 246
185 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.

Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety

Procedia PDF Downloads 240
184 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 303
183 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 63
182 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 66
181 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 126
180 Effect of the Orifice Plate Specifications on Coefficient of Discharge

Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer

Abstract:

On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.

Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications

Procedia PDF Downloads 119
179 Three Foci of Trust as Potential Mediators in the Association Between Job Insecurity and Dynamic Organizational Capability: A Quantitative, Exploratory Study

Authors: Marita Heyns

Abstract:

Job insecurity is a distressing phenomenon which has far reaching consequences for both employees and their organizations. Previously, much attention has been given to the link between job insecurity and individual level performance outcomes, while less is known about how subjectively perceived job insecurity might transfer beyond the individual level to affect performance of the organization on an aggregated level. Research focusing on how employees’ fear of job loss might affect the organization’s ability to respond proactively to volatility and drastic change through applying its capabilities of sensing, seizing, and reconfiguring, appears to be practically non-existent. Equally little is known about the potential underlying mechanisms through which job insecurity might affect the dynamic capabilities of an organization. This study examines how job insecurity might affect dynamic organizational capability through trust as an underling process. More specifically, it considered the simultaneous roles of trust at an impersonal (organizational) level as well as trust at an interpersonal level (in leaders and co-workers) as potential underlying mechanisms through which job insecurity might affect the organization’s dynamic capability to respond to opportunities and imminent, drastic change. A quantitative research approach and a stratified random sampling technique enabled the collection of data among 314 managers at four different plant sites of a large South African steel manufacturing organization undergoing dramatic changes. To assess the study hypotheses, the following statistical procedures were employed: Structural equation modelling was performed in Mplus to evaluate the measurement and structural models. The Chi-square values test for absolute fit as well as alternative fit indexes such as the Comparative Fit Index and the Tucker-Lewis Index, the Root Mean Square Error of Approximation and the Standardized Root Mean Square Residual were used as indicators of model fit. Composite reliabilities were calculated to evaluate the reliability of the factors. Finally, interaction effects were tested by using PROCESS and the construction of two-sided 95% confidence intervals. The findings indicate that job insecurity had a lower-than-expected detrimental effect on evaluations of the organization’s dynamic capability through the conducive buffering effects of trust in the organization and in its leaders respectively. In contrast, trust in colleagues did not seem to have any noticeable facilitative effect. The study proposes that both job insecurity and dynamic capability can be managed more effectively by also paying attention to factors that could promote trust in the organization and its leaders; some practical recommendations are given in this regard.

Keywords: dynamic organizational capability, impersonal trust, interpersonal trust, job insecurity

Procedia PDF Downloads 89
178 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces

Authors: Somnath Bhattacharyya

Abstract:

The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.

Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions

Procedia PDF Downloads 72