Search results for: peer-to-peer networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2801

Search results for: peer-to-peer networks

221 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 97
220 Analysis of Distance Travelled by Plastic Consumables Used in the First 24 Hours of an Intensive Care Admission: Impacts and Methods of Mitigation

Authors: Aidan N. Smallwood, Celestine R. Weegenaar, Jack N. Evans

Abstract:

The intensive care unit (ICU) is a particularly resource heavy environment, in terms of staff, drugs and equipment required. Whilst many areas of the hospital are attempting to cut down on plastic use and minimise their impact on the environment, this has proven challenging within the confines of intensive care. Concurrently, as globalization has progressed over recent decades, there has been a tendency towards centralised manufacturing with international distribution networks for products, often covering large distances. In this study, we have modelled the standard consumption of plastic single-use items over the course of the first 24-hours of an average individual patient’s stay in a 12 bed ICU in the United Kingdom (UK). We have identified the country of manufacture and calculated the minimum possible distance travelled by each item from factory to patient. We have assumed direct transport via the shortest possible straight line from country of origin to the UK and have not accounted for transport within either country. Assuming an intubated patient with invasive haemodynamic monitoring and central venous access, there are a total of 52 distincts, largely plastic, disposable products which would reasonably be required in the first 24-hours after admission. Each product type has only been counted once to account for multiple items being shipped as one package. Travel distances from origin were summed to give the total distance combined for all 52 products. The minimum possible total distance travelled from country of origin to the UK for all types of product was 273,353 km, equivalent to 6.82 circumnavigations of the globe, or 71% of the way to the moon. The mean distance travelled was 5,256 km, approximately the distance from London to Mecca. With individual packaging for each item, the total weight of consumed products was 4.121 kg. The CO2 produced shipping these items by air freight would equate to 30.1 kg, however doing the same by sea would produce 0.2 kg CO2. Extrapolating these results to the 211,932 UK annual ICU admissions (2018-2019), even with the underestimates of distance and weight of our assumptions, air freight would account for 6586 tons CO2 emitted annually, approximately 130 times that of sea freight. Given the drive towards cost saving within the UK health service, and the decline of the local manufacturing industry, buying from intercontinental manufacturers is inevitable However, transporting all consumables by sea where feasible would be environmentally beneficial, as well as being less costly than air freight. At present, the NHS supply chain purchases from medical device companies, and there is no freely available information as to the transport mode used to deliver the product to the UK. This must be made available to purchasers in order to give a fuller picture of life cycle impact and allow for informed decision making in this regard.

Keywords: CO2, intensive care, plastic, transport

Procedia PDF Downloads 178
219 Provisional Settlements and Urban Resilience: The Transformation of Refugee Camps into Cities

Authors: Hind Alshoubaki

Abstract:

The world is now confronting a widespread urban phenomenon: refugee camps, which have mostly been established in ‘rushing mode,’ pointing toward affording temporary settlements for refugees that provide them with minimum levels of safety, security and protection from harsh weather conditions within a very short time period. In fact, those emergency settlements are transforming into permanent ones since time is a decisive factor in terms of construction and camps’ age. These play an essential role in transforming their temporary character into a permanent one that generates deep modifications to the city’s territorial structure, shaping a new identity and creating a contentious change in the city’s form and history. To achieve a better understanding for the transformation of refugee camps, this study is based on a mixed-methods approach: the qualitative approach explores different refugee camps and analyzes their transformation process in terms of population density and the changes to the city’s territorial structure and urban features. The quantitative approach employs a statistical regression analysis as a reliable prediction of refugees’ satisfaction within the Zaatari camp in order to predict its future transformation. Obviously, refugees’ perceptions of their current conditions will affect their satisfaction, which plays an essential role in transforming emergency settlements into permanent cities over time. The test basically discusses five main themes: the access and readiness of schools, the dispersion of clinics and shopping centers; the camp infrastructure, the construction materials, and the street networks. The statistical analysis showed that Syrian refugees were not satisfied with their current conditions inside the Zaatari refugee camp and that they had started implementing changes according to their needs, desires, and aspirations because they are conscious about the fact of their prolonged stay in this settlement. Also, the case study analyses showed that neglecting the fact that construction takes time leads settlements being created with below-minimum standards that are deteriorating and creating ‘slums,’ which lead to increased crime rates, suicide, drug use and diseases and deeply affect cities’ urban tissues. For this reason, recognizing the ‘temporary-eternal’ character of those settlements is the fundamental concept to consider refugee camps from the beginning as definite permanent cities. This is the key factor to minimize the trauma of displacement on both refugees and the hosting countries. Since providing emergency settlements within a short time period does not mean using temporary materials, having a provisional character or creating ‘makeshift cities.’

Keywords: refugee, refugee camp, temporary, Zaatari

Procedia PDF Downloads 133
218 The Development of Explicit Pragmatic Knowledge: An Exploratory Study

Authors: Aisha Siddiqa

Abstract:

The knowledge of pragmatic practices in a particular language is considered key to effective communication. Unlike one’s native language where this knowledge is acquired spontaneously, more conscious attention is required to learn second language pragmatics. Traditional foreign language (FL) classrooms generally focus on the acquisition of vocabulary and lexico-grammatical structures, neglecting pragmatic functions that are essential for effective communication in the multilingual networks of the modern world. In terms of effective communication, of particular importance is knowledge of what is perceived as polite or impolite in a certain language, an aspect of pragmatics which is not perceived as obligatory but is nonetheless indispensable for successful intercultural communication and integration. While learning a second language, the acquisition of politeness assumes more prominence as the politeness norms and practices vary according to language and culture. Therefore, along with focusing on the ‘use’ of politeness strategies, it is crucial to examine the ‘acquisition’ and the ‘acquisitional development’ of politeness strategies by second language learners, particularly, by lower proficiency leaners as the norms of politeness are usually focused in lower levels. Hence, there is an obvious need for a study that not only investigates the acquisition of pragmatics by young FL learners using innovative multiple methods; but also identifies the potential causes of the gaps in their development. The present research employs a cross sectional design to explore the acquisition of politeness by young English as a foreign language learners (EFL) in France; at three levels of secondary school learning. The methodology involves two phases. In the first phase a cartoon oral production task (COPT) is used to elicit samples of requests from young EFL learners in French schools. These data are then supplemented by a) role plays, b) an analysis of textbooks, and c) video recordings of classroom activities. This mixed method approach allows us to explore the repertoire of politeness strategies the learners possess and delve deeper into the opportunities available to learners in classrooms to learn politeness strategies in requests. The paper will provide the results of the analysis of COPT data for 250 learners at three different stages of English as foreign language development. Data analysis is based on categorization of requests developed in CCSARP project. The preliminary analysis of the COPT data shows that there is substantial evidence of pragmalinguistic development across all levels but the developmental process seems to gain momentum in the second half of the secondary school period as compared to the early period at school. However, there is very little evidence of sociopragmatic development. The study aims to document the current classroom practices in France by looking at the development of young EFL learner’s politeness strategies across three levels of secondary schools.

Keywords: acquisition, English, France, interlanguage pragmatics, politeness

Procedia PDF Downloads 424
217 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 298
216 Transmedia and Platformized Political Discourse in a Growing Democracy: A Study of Nigeria’s 2023 General Elections

Authors: Tunde Ope-Davies

Abstract:

Transmediality and platformization as online content-sharing protocols have continued to accentuate the growing impact of the unprecedented digital revolution across the world. The rapid transformation across all sectors as a result of this revolution has continued to spotlight the increasing importance of new media technologies in redefining and reshaping the rhythm and dynamics of our private and public discursive practices. Equally, social and political activities are being impacted daily through the creation and transmission of political discourse content through multi-channel platforms such as mobile telephone communication, social media networks and the internet. It has been observed that digital platforms have become central to the production, processing, and distribution of multimodal social data and cultural content. The platformization paradigm thus underpins our understanding of how digital platforms enhance the production and heterogenous distribution of media and cultural content through these platforms and how this process facilitates socioeconomic and political activities. The use of multiple digital platforms to share and transmit political discourse material synchronously and asynchronously has gained some exciting momentum in the last few years. Nigeria’s 2023 general elections amplified the usage of social media and other online platforms as tools for electioneering campaigns, socio-political mobilizations and civic engagement. The study, therefore, focuses on transmedia and platformed political discourse as a new strategy to promote political candidates and their manifesto in order to mobilize support and woo voters. This innovative transmedia digital discourse model involves a constellation of online texts and images transmitted through different online platforms almost simultaneously. The data for the study was extracted from the 2023 general elections campaigns in Nigeria between January- March 2023 through media monitoring, manual download and the use of software to harvest the online electioneering campaign material. I adopted a discursive-analytic qualitative technique with toolkits drawn from a computer-mediated multimodal discourse paradigm. The study maps the progressive development of digital political discourse in this young democracy. The findings also demonstrate the inevitable transformation of modern democratic practice through platform-dependent and transmedia political discourse. Political actors and media practitioners now deploy layers of social media network platforms to convey messages and mobilize supporters in order to aggregate and maximize the impact of their media campaign projects and audience reach.

Keywords: social media, digital humanities, political discourse, platformized discourse, multimodal discourse

Procedia PDF Downloads 85
215 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 134
214 Nuclear Near Misses and Their Learning for Healthcare

Authors: Nick Woodier, Iain Moppett

Abstract:

Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.

Keywords: culture, definitions, near miss, nuclear safety, patient safety

Procedia PDF Downloads 104
213 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 95
212 Learning from Long COVID: How Healthcare Needs to Change for Contested Illnesses

Authors: David Tennison

Abstract:

In the wake of the Covid-19 pandemic, a new chronic illness emerged onto the global stage: Long Covid. Long Covid presents with several symptoms commonly seen in other poorly-understood illnesses, such as fibromyalgia (FM) and myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS). However, while Long Covid has swiftly become a recognised illness, FM and ME/CFS are still seen as contested, which impacts patient care and healthcare experiences. This study aims to examine what the differences are between Long Covid and FM; and if the Long Covid case can provide guidance for how to address the healthcare challenge of contested illnesses. To address this question, this study performed comprehensive research into the history of FM; our current biomedical understanding of it; and available healthcare interventions (within the context of the UK NHS). Analysis was undertaken of the stigma and stereotypes around FM, and a comparison made between FM and the emerging Long Covid literature, along with the healthcare response to Long Covid. This study finds that healthcare for chronic contested illnesses in the UK is vastly insufficient - in terms of pharmaceutical and holistic interventions, and the provision of secondary care options. Interestingly, for Long Covid, many of the treatment suggestions are pulled directly from those used for contested illnesses. The key difference is in terms of funding and momentum – Long Covid has generated exponentially more interest and research in a short time than there has been in the last few decades of contested illness research. This stands to help people with FM and ME/CFS – for example, research has recently been funded into “brain fog”, a previously elusive and misunderstood symptom. FM is culturally regarded as a “women’s disease” and FM stigma stems from notions of “hysteria”. A key finding is that the idea of FM affecting women disproportionally is not reflected in modern population studies. Emerging data on Long Covid also suggests a slight leaning towards more female patients, however it is less feminised, potentially due to it emerging in the global historical moment of the pandemic. Another key difference is that FM is rated as an extremely low-prestige illness by healthcare professionals, while it was in large part due to the advocacy of affected healthcare professionals that Long Covid was so quickly recognised by science and medicine. In conclusion, Long Covid (and the risk of future pandemics and post-viral illnesses) highlight a crucial need for implementing new, and reinforcing existing, care networks for chronic illnesses. The difference in how contested illnesses like FM, and new ones like Long Covid are treated have a lot to do with the historical moment in which they emerge – but cultural stereotypes, from within and without medicine, need updating. Particularly as they contribute to disease stigma that causes genuine harm to patients. However, widespread understanding and acceptance of Long Covid could help fight contested illness stigma, and the attention, funding and research into Long Covid may actually help raise the profile of contested illnesses and uncover answers about their symptomatology.

Keywords: long COVID, fibromyalgia, myalgic encephalomyelitis, chronic fatigue syndrome, NHS, healthcare, contested illnesses, chronic illnesses, COVID-19 pandemic

Procedia PDF Downloads 70
211 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.

Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development

Procedia PDF Downloads 118
210 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 123
209 Poly(Acrylamide-Co-Itaconic Acid) Nanocomposite Hydrogels and Its Use in the Removal of Lead in Aqueous Solution

Authors: Majid Farsadrouh Rashti, Alireza Mohammadinejad, Amir Shafiee Kisomi

Abstract:

Lead (Pb²⁺), a cation, is a prime constituent of the majority of the industrial effluents such as mining, smelting and coal combustion, Pb-based painting and Pb containing pipes in water supply systems, paper and pulp refineries, printing, paints and pigments, explosive manufacturing, storage batteries, alloy and steel industries. The maximum permissible limit of lead in the water used for drinking and domesticating purpose is 0.01 mg/L as advised by Bureau of Indian Standards, BIS. This becomes the acceptable 'safe' level of lead(II) ions in water beyond which, the water becomes unfit for human use and consumption, and is potential enough to lead health problems and epidemics leading to kidney failure, neuronal disorders, and reproductive infertility. Superabsorbent hydrogels are loosely crosslinked hydrophilic polymers that in contact with aqueous solution can easily water and swell to several times to their initial volume without dissolving in aqueous medium. Superabsorbents are kind of hydrogels capable to swell and absorb a large amount of water in their three-dimensional networks. While the shapes of hydrogels do not change extensively during swelling, because of tremendously swelling capacity of superabsorbent, their shape will broadly change.Because of their superb response to changing environmental conditions including temperature pH, and solvent composition, superabsorbents have been attracting in numerous industrial applications. For instance, water retention property and subsequently. Natural-based superabsorbent hydrogels have attracted much attention in medical pharmaceutical, baby diapers, agriculture, and horticulture because of their non-toxicity, biocompatibility, and biodegradability. Novel superabsorbent hydrogel nanocomposites were prepared by graft copolymerization of acrylamide and itaconic acid in the presence of nanoclay (laponite), using methylene bisacrylamide (MBA) and potassium persulfate, former as a crosslinking agent and the second as an initiator. The superabsorbent hydrogel nanocomposites structure was characterized by FTIR spectroscopy, SEM and TGA Spectroscopy adsorption of metal ions on poly (AAm-co-IA). The equilibrium swelling values of copolymer was determined by gravimetric method. During the adsorption of metal ions on polymer, residual metal ion concentration in the solution and the solution pH were measured. The effects of the clay content of the hydrogel on its metal ions uptake behavior were studied. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove heavy metals.

Keywords: adsorption, hydrogel, nanocomposite, super adsorbent

Procedia PDF Downloads 187
208 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 318
207 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 12
206 Innovation Culture TV “Stars of Science”: 15 Seasons Case Study

Authors: Fouad Mrad, Viviane Zaccour

Abstract:

The accelerated developments in the political, economic, environmental, security, health, and social folders are exhausting planners across the world, especially in Arab countries. The impact of the tension is multifaceted and has resulted in conflicts, wars, migration, and human insecurity. The potential cross-cutting role that science, innovation and technology can play in supporting Arab societies to address these pressing challenges is a serious, unique chance for the people of the region. This opportunity is based on the existing capacity of educated youth and inaccessible talents in the local universities and research centers. It has been accepted that Arab countries have achieved major advancements in the economy, education and social wellbeing since the 70s of the 20th Century. Mainly direct outcome of the oil and other natural resources. The UN Secretary-General, during the Education Summit in Sep 2022, stressed that “Learning continues to underplay skills, including problem-solving, critical thinking and empathy.” Stars of Science by Qatar Foundation was launched in 2009 and has been sustained through 2023. Consistent mission from the start: To mobilize a new generation of Pan-Arab innovators and problem solvers by encouraging youth participation and interest in Science, Technology and Entrepreneurship throughout the Arab world via the program and its social media activities. To make science accessible and attractive to mass audiences by de-mystifying the process of innovation. Harnessing best practices within reality TV to show that science, engineering, and innovation are important in everyday life and can be fun.” Thousands of Participants learned unforgettable lessons; winners changed their lives forever as they learned and earned seed capital; they became drivers of change in their countries and families; millions of viewers were exposed to an innovative experimental process, and culturally, several relevant national institutions adopted the SOS track in their national initiatives. The program exhibited experientially youth self-efficacy as the most distinct core property of human agency, which is an individual's belief in his or her capacity to execute behaviors necessary to produce specific performance attainments. In addition, the program proved that innovations are performed by networks of people with different sets of technological, useful knowledge, skills and competencies introduced by socially shared technological knowledge as a main determinant of economic activities in any economy.

Keywords: science, invention, innovation, Qatar foundation, QSTP, prototyping

Procedia PDF Downloads 77
205 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain

Authors: Alba Ballester Ciuró, Marc Pares Franzi

Abstract:

While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.

Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment

Procedia PDF Downloads 211
204 Inequality of Opportunities and Dropping Out of High School: Perspectives for Students from a Public School and a Private School in Brazil

Authors: Joyce Mary Adam

Abstract:

The subject of youth and education has been on the agenda of both public policies and specific education policies. In this sense, this work aims to discuss, based on the conceptions of social capital and cultural capital, the possibilities of elaborating and putting into practice the life projects they build during secondary school. The critical view brought by the concepts of social capital and cultural capital considers that in the school environment, those who have social capital and cultural capital have more tools to continue their projects, while those who do not have such capital will consequently have fewer opportunities, a fact that directly contributes to the perpetuation of social and educational inequality. When the "Life Project" is discussed under the sole responsibility of the students, it is clear that it is the students who must "take their responsibilities and decisions", their success or failure. From this point of view, the success of the implementation of the Life Project is determined by how well the students have developed their "skills and competencies" and their capacity for entrepreneurship without promoting a critical reflection on the real economic difficulties of the majority of students at this level of education. This situation gives rise to feelings of self-blame and self-responsibility among young people, who are compelled to confront the reality that their expectations have not been fulfilled, that they have been unable to gain employment, and, in some instances, that they have been marginalized. In this regard, the research project aimed to gather data on the living conditions of students at a public school and a private school in Brazil through interviews. The research methodology was interviews with students from a public school and an elite private school. The main objective of the research was to analyze the students' cultural and social capital as a key element in their social and professional integration after completing this stage of education. The study showed that social and cultural capital has a significant influence on opportunities to continue studying or to find a satisfactory job. For young people from public schools and from lower economic classes, the need to enter the job market as soon as they finish or even before they finish high school is due to economic and survival issues. The hours of dedication to studies and the diversity of cultural activities such as trips, visits to museums, or the cultivation of artistic activities available to poorer students in state schools have proved to be rarer. In conclusion, we found that the difference in social and cultural capital between the young people taking part in the research has been shown to play an important role in the social and professional integration of the students and contributes to the maintenance of school and social inequality. This highlights the importance of public policies and support networks for young people leaving secondary school.

Keywords: social capital, cultural capital, high school, life project, social insertion, professional insertion, youth

Procedia PDF Downloads 25
203 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164
202 Developing a Quality Mentor Program: Creating Positive Change for Students in Enabling Programs

Authors: Bianca Price, Jennifer Stokes

Abstract:

Academic and social support systems are critical for students in enabling education; these support systems have the potential to enhance the student experience whilst also serving a vital role for student retention. In the context of international moves toward widening university participation, Australia has developed enabling programs designed to support underrepresented students to access to higher education. The purpose of this study is to examine the effectiveness of a mentor program based within an enabling course. This study evaluates how the mentor program supports new students to develop social networks, improve retention, and increase satisfaction with the student experience. Guided by Social Learning Theory (SLT), this study highlights the benefits that can be achieved when students engage in peer-to-peer based mentoring for both social and learning support. Whilst traditional peer mentoring programs are heavily based on face-to-face contact, the present study explores the difference between mentors who provide face-to-face mentoring, in comparison with mentoring that takes place through the virtual space, specifically via a virtual community in the shape of a Facebook group. This paper explores the differences between these two methods of mentoring within an enabling program. The first method involves traditional face-to-face mentoring that is provided by alumni students who willingly return to the learning community to provide social support and guidance for new students. The second method requires alumni mentor students to voluntarily join a Facebook group that is specifically designed for enabling students. Using this virtual space, alumni students provide advice, support and social commentary on how to be successful within an enabling program. Whilst vastly different methods, both of these mentoring approaches provide students with the support tools needed to enhance their student experience and improve transition into University. To evaluate the impact of each mode, this study uses mixed methods including a focus group with mentors, in-depth interviews, as well as engaging in netnography of the Facebook group ‘Wall’. Netnography is an innovative qualitative research method used to interpret information that is available online to better understand and identify the needs and influences that affect the users of the online space. Through examining the data, this research will reflect upon best practice for engaging students in enabling programs. Findings support the applicability of having both face-to-face and online mentoring available for students to assist enabling students to make a positive transition into University undergraduate studies.

Keywords: enabling education, mentoring, netnography, social learning theory

Procedia PDF Downloads 121
201 The Spatial Circuit of the Audiovisual Industry in Argentina: From Monopoly and Geographic Concentration to New Regionalization and Democratization Policies

Authors: André Pasti

Abstract:

Historically, the communication sector in Argentina is characterized by intense monopolization and geographical concentration in the city of Buenos Aires. In 2000, the four major media conglomerates in operation – Clarín, Telefónica, America and Hadad – controlled 84% of the national media market. By 2009, new policies were implemented as a result of civil society organizations demands. Legally, a new regulatory framework was approved: the law 26,522 of Audiovisual Communications Services. Supposedly, these policies intend to create new conditions for the development of the audiovisual economy in the territory of Argentina. The regionalization of audiovisual production and the democratization of channels and access to media were among the priorities. This paper analyses the main changes and continuities in the organization of the spatial circuit of the audiovisual industry in Argentina provoked by these new policies. These new policies aim at increasing the diversity of audiovisual producers and promoting regional audiovisual industries. For this purpose, a national program for the development of audiovisual centers within the country was created. This program fostered a federalized production network, based on nine audiovisual regions and 40 nodes. Each node has created technical, financial and organizational conditions to gather different actors in audiovisual production – such as SMEs, social movements and local associations. The expansion of access to technical networks was also a concern of other policies, such as ‘Argentina connected’, whose objective was to expand access to broadband Internet. The Open Digital Television network also received considerable investments. Furthermore, measures have been carried out in order to impose limits on the concentration of ownership as well as to eliminate the oligopolies and to ensure more competition in the sector. These actions intended to force a divide of the media conglomerates into smaller groups. Nevertheless, the corporations that compose these conglomerates resist strongly, making full use of their economic and judiciary power. Indeed, the absence of effective impact of such measures can be testified by the fact that the audiovisual industry remains strongly concentrated in Argentina. Overall, these new policies were designed properly to decentralize audiovisual production and expand the regional diversity of the audiovisual industry. However, the effective transformation of the organization of the audiovisual circuit in the territory faced several resistances. This can be explained firstly and foremost by the ideological and economic power of the media conglomerates. In the second place, there is an inherited inertia from the unequal distribution of the objects needed for the audiovisual production and consumption. Lastly, the resistance also relies on financial needs and in the excessive dependence of the state for the promotion of regional audiovisual production.

Keywords: Argentina, audiovisual industry, communication policies, geographic concentration, regionalization, spatial circuit

Procedia PDF Downloads 216
200 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 130
199 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 10
198 Structural Balance and Creative Tensions in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development involves team members coming together and working in teams to come up with innovative solutions to problems, resulting in new products. Thus, a core attribute of a successful NPD team is their creativity and innovation. They need to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas, resulting in a POC (proof-of-concept) implementation or a prototype of the product. There are two distinctive traits that the teams need to have, one is ideational creativity, and the other is effective and efficient teamworking. There are multiple types of tensions that each of these traits cause in the teams, and these tensions reflect in the team dynamics. Ideational conflicts arising out of debates and deliberations increase the collective knowledge and affect the team creativity positively. However, the same trait of challenging each other’s viewpoints might lead the team members to be disruptive, resulting in interpersonal tensions, which in turn lead to less than efficient teamwork. Teams that foster and effectively manage these creative tensions are successful, and teams that are not able to manage these tensions show poor team performance. In this paper, it explore these tensions as they result in the team communication social network and propose a Creative Tension Balance index along the lines of Degree of Balance in social networks that has the potential to highlight the successful (and unsuccessful) NPD teams. Team communication reflects the team dynamics among team members and is the data set for analysis. The emails between the members of the NPD teams are processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. This social network is subjected to traditional social network analysis methods to arrive at some established metrics and structural balance analysis metrics. Traditional structural balance is extended to include team interaction pattern metrics to arrive at a creative tension balance metric that effectively captures the creative tensions and tension balance in teams. This CTB (Creative Tension Balance) metric truly captures the signatures of successful and unsuccessful (dissonant) NPD teams. The dataset for this research study includes 23 NPD teams spread out over multiple semesters and computes this CTB metric and uses it to identify the most successful and unsuccessful teams by classifying these teams into low, high and medium performing teams. The results are correlated to the team reflections (for team dynamics and interaction patterns), the team self-evaluation feedback surveys (for teamwork metrics) and team performance through a comprehensive team grade (for high and low performing team signatures).

Keywords: team dynamics, social network analysis, new product development teamwork, structural balance, NPD teams

Procedia PDF Downloads 79
197 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 209
196 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health

Authors: Adam Gushgari

Abstract:

The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.

Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse

Procedia PDF Downloads 108
195 Roads and Agriculture: Impacts of Connectivity in Peru

Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte

Abstract:

A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.

Keywords: agriculture devolepment, market access, road connectivity, regional development

Procedia PDF Downloads 205
194 Identifying the Risks on Philippines’ Pre- and Post-Disaster Media Communication on Natural Hazards

Authors: Neyzielle Ronnicque Cadiz

Abstract:

The Philippine is a hotbed of disasters and is a locus of natural hazards. With an average of 20 typhoons entering the Philippine Area of Responsibility (PAR) each year, seven to eight (7-8) of which makes landfall. The country rather inevitably suffers from climate-related calamities. With this vulnerability to natural hazards, the relevant hazard-related issues that come along with the potential threat and occurrence of a disaster oftentimes garners lesser media attention than when a disaster actually occurred. Post-disaster news and events flood the content of news networks primarily focusing on, but not limited to, the efforts of the national government in resolving post-disaster displacement, and all the more on the community leaders’ incompetence in disaster mitigation-- even though the University of the Philippines’ NOAH Center work hand in hand with different stakeholders for disaster mitigation communication efforts. Disaster risk communication is actually a perennial dilemma. There are so many efforts to reach the grassroots level but emergency and disaster preparedness messages inevitably fall short.. The Philippines is very vulnerable to hazards risk and disasters but social media posts and communication efforts mostly go unnoticed, if not argued upon. This study illustrates the outcomes of a research focusing on the print, broadcast, and social media’s role on disaster communication involving the natural catastrophic events that took place in the Philippines from 2009 to present. Considering the country’s state of development, this study looks on the rapid and reliable communication between the government, and the relief/rescue workers in the affected regions; and how the media portrays these efforts effectively. Learning from the disasters that have occurred in the Philippines over the past decade, effective communication can ensure that any efforts to prepare and respond to disasters can make a significant difference. It can potentially either break or save lives. Recognizing the role of communications is not only in improving the coordination of vital services for post disaster; organizations gave priority in reexamining disaster preparedness mechanisms through the Communication with Communities (CwC) programs. This study, however, looks at the CwC efforts of the Philippine media platforms. CwC, if properly utilized by the media, is an essential tool in ensuring accountability and transparency which require effective exchange of information between disasters and survivors and responders. However, in this study, it shows that the perennial dilemma of the Philippine media is that the Disaster Risk Reduction and Management (DRRM) efforts of the country lie in the clouded judgment of political aims. This kind of habit is a multiplier of the country’s risk and insecurity. Sometimes the efforts in urging the public to take action seem useless because the challenge lies on how to achieve social, economic, and political unity using the tri-media platform.

Keywords: Philippines at risk, pre/post disaster communication, tri-media platform, UP NOAH

Procedia PDF Downloads 179
193 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 136
192 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview

Authors: Yasmeen Cheema, Parvinder Singh

Abstract:

The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.

Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack

Procedia PDF Downloads 230