Search results for: architecture complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3235

Search results for: architecture complexity

655 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 76
654 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 153
653 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 49
652 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 303
651 The Judiciary as Pacemaker? Considering the Role of Courts in an Expansion of Protection for War Refugees and People Fleeing Natural Disasters

Authors: Charlotte Lülf

Abstract:

Migration flows, resulting from war, climate change or economic crisis cannot be tackled by single states but need to be addressed as a transnational and international responsibility. The traditional architecture surrounding the work of the UNHCR and the 1951 Convention, however, is not equipped to deal with these challenges. Widely excluded from legal protection are people not individually persecuted for the statutory criteria, people that flee from the indiscriminate effects of an armed conflict as well as people fleeing natural disasters. With the lack of explicit legal protection and the political reluctance of nation states worldwide to extend their commitment in new asylum laws, the judiciary must be put in focus: it plays a unique role in interpreting and potentially expanding the application of existing regulations. This paper as part of an ongoing Ph.D. Project deals with the current and partly contradicting approaches to the protection of war- and climate refugees. Changing jurisprudential practice of national and regional courts will be assessed, as will be their dialogue to interpret the international obligations of human rights law, migration laws, and asylum laws in an interacting world. In recent judgments refoulment to an armed conflict as well as countries without adequate disaster relief or health care was argued as violating fundamental human and asylum law rights and therefore prohibited – even for applicants without refugee status: The first step towards access to subsidiary protection could herewith be established. Can one observe similar developments in other parts of the world? This paper will evaluate the role of the judiciary to define, redefine and potentially expand protection for people seeking refuge from armed conflicts and natural disasters.

Keywords: human rights law, asylum-seekers, displacement, migration

Procedia PDF Downloads 265
650 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation

Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar

Abstract:

Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.

Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation

Procedia PDF Downloads 466
649 Influence of Smoking on Fine And Ultrafine Air Pollution Pm in Their Pulmonary Genetic and Epigenetic Toxicity

Authors: Y. Landkocz, C. Lepers, P.J. Martin, B. Fougère, F. Roy Saint-Georges. A. Verdin, F. Cazier, F. Ledoux, D. Courcot, F. Sichel, P. Gosset, P. Shirali, S. Billet

Abstract:

In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and fine particles as carcinogenic to humans. Causal relationships exist between elevated ambient levels of airborne particles and increase of mortality and morbidity including pulmonary diseases, like lung cancer. However, due to a double complexity of both physicochemical Particulate Matter (PM) properties and tumor mechanistic processes, mechanisms of action remain not fully elucidated. Furthermore, because of several common properties between air pollution PM and tobacco smoke, like the same route of exposure and chemical composition, potential mechanisms of synergy could exist. Therefore, smoking could be an aggravating factor of the particles toxicity. In order to identify some mechanisms of action of particles according to their size, two samples of PM were collected: PM0.03 2.5 and PM0.33 2.5 in the urban-industrial area of Dunkerque. The overall cytotoxicity of the fine particles was determined on human bronchial cells (BEAS-2B). Toxicological study focused then on the metabolic activation of the organic compounds coated onto PM and some genetic and epigenetic changes induced on a co-culture model of BEAS-2B and alveolar macrophages isolated from bronchoalveolar lavages performed in smokers and non-smokers. The results showed (i) the contribution of the ultrafine fraction of atmospheric particles to genotoxic (eg. DNA double-strand breaks) and epigenetic mechanisms (eg. promoter methylation) involved in tumor processes, and (ii) the influence of smoking on the cellular response. Three main conclusions can be discussed. First, our results showed the ability of the particles to induce deleterious effects potentially involved in the stages of initiation and promotion of carcinogenesis. The second conclusion is that smoking affects the nature of the induced genotoxic effects. Finally, the in vitro developed cell model, using bronchial epithelial cells and alveolar macrophages can take into account quite realistically, some of the existing cell interactions existing in the lung.

Keywords: air pollution, fine and ultrafine particles, genotoxic and epigenetic alterations, smoking

Procedia PDF Downloads 330
648 Combination between Intrusion Systems and Honeypots

Authors: Majed Sanan, Mohammad Rammal, Wassim Rammal

Abstract:

Today, security is a major concern. Intrusion Detection, Prevention Systems and Honeypot can be used to moderate attacks. Many researchers have proposed to use many IDSs ((Intrusion Detection System) time to time. Some of these IDS’s combine their features of two or more IDSs which are called Hybrid Intrusion Detection Systems. Most of the researchers combine the features of Signature based detection methodology and Anomaly based detection methodology. For a signature based IDS, if an attacker attacks slowly and in organized way, the attack may go undetected through the IDS, as signatures include factors based on duration of the events but the actions of attacker do not match. Sometimes, for an unknown attack there is no signature updated or an attacker attack in the mean time when the database is updating. Thus, signature-based IDS fail to detect unknown attacks. Anomaly based IDS suffer from many false-positive readings. So there is a need to hybridize those IDS which can overcome the shortcomings of each other. In this paper we propose a new approach to IDS (Intrusion Detection System) which is more efficient than the traditional IDS (Intrusion Detection System). The IDS is based on Honeypot Technology and Anomaly based Detection Methodology. We have designed Architecture for the IDS in a packet tracer and then implemented it in real time. We have discussed experimental results performed: both the Honeypot and Anomaly based IDS have some shortcomings but if we hybridized these two technologies, the newly proposed Hybrid Intrusion Detection System (HIDS) is capable enough to overcome these shortcomings with much enhanced performance. In this paper, we present a modified Hybrid Intrusion Detection System (HIDS) that combines the positive features of two different detection methodologies - Honeypot methodology and anomaly based intrusion detection methodology. In the experiment, we ran both the Intrusion Detection System individually first and then together and recorded the data from time to time. From the data we can conclude that the resulting IDS are much better in detecting intrusions from the existing IDSs.

Keywords: security, intrusion detection, intrusion prevention, honeypot, anomaly-based detection, signature-based detection, cloud computing, kfsensor

Procedia PDF Downloads 359
647 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios

Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu

Abstract:

Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.

Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method

Procedia PDF Downloads 140
646 Split Health System for Diabetes Care in Urban Area: Experience from an Action Research Project in an Urban Poor Neighborhood in Bengaluru

Authors: T. S. Beerenahally, S. Amruthavalli, C. M. Munegowda, Leelavathi, Nagarathna

Abstract:

Introduction: In majority of urban India, the health system is split between different authorities being responsible for the health care of urban population. We believe that, apart from poor awareness and financial barriers to care, there are other health system barriers which affect quality and access to care for people with diabetes. In this paper, we attempted to identify health system complexity that determines access to public health system for diabetes care in KG Halli, a poor urban neighborhood in Bengaluru. The KG Halli has been a locus of a health systems research from 2009 to 2015. Methodology: The source of data is from the observational field-notes written by research team as part of urban health action research project (UHARP). Field notes included data from the community and the public primary care center. The data was generated by the community health assistants and the other research team members during regular home visits and interaction with individuals who self-reported to be diabetic over four years as part of UHARP. Results: It emerged during data analysis that the patients were not keen on utilizing primary public health center for many reasons. Patient has felt that the service provided at the center was not integrated. There was lack of availability of medicines, with a regular stock out of medicines in a year and laboratory service for investigation was limited. Many of them said that the time given by the providers was not sufficient and there was also a feeling of providers not listening to them attentively. The power dynamics played a huge role in communication. Only the consultation was available for free of cost at the public primary care center. The patient had to spend for the investigations and the major portion for medicine. Conclusion: Diabetes is a chronic disease that poses an important emerging public health concern. Most of the financial burden is borne by the family as the public facilities have failed to provide free care in India. Our study indicated various factors including individual beliefs, stigma and financial constraints affecting compliance to diabetes care.

Keywords: diabetes care, disintegrated health system, quality of care, urban health

Procedia PDF Downloads 142
645 Money Laundering and Terror Financing in the Islamic Banking Sector in Bangladesh

Authors: Md. Abdul Kader

Abstract:

Several reports released by Global Financial Integrity (GFI) in recent times have identified Bangladesh as being among the worst affected countries to the scourge of money laundering (ML) and terrorist financing (TF). The money laundering (ML) and terrorist financing (TF) risks associated with conventional finance are generally well identified and understood by the relevant national authorities. There is, however, no common understanding of ML/TF risks associated with Islamic Banking. This paper attempts to examine the issues of money laundering (ML) and terrorist financing (TF) in Islamic Banks of Bangladesh. This study also investigates the risk factors associated with Islamic Banking system of Bangladesh that are favorable for ML and TF and which prevent the government to control such issues in the Islamic Banks of Bangladesh. Qualitative research methods were employed by studying various reports from journals, newspapers, bank reports and periodicals. In addition, five ex-bankers who were in the policy making bodies of three Islamic Banks were also interviewed. Findings suggest that government policies regarding Islamic Banking system in Bangladesh are not well defined and clear. Shariah law, that is the guiding principle of Islamic Banking, is not well recognized by the government policy makers, and thus they left the responsibility to the governing bodies of the banks. Other challenges that were found in the study are: the complexity of some Islamic banking products, the different forms of relationship between the banks and their clients, the inadequate ability and skill in the supervision of Islamic finance, particularly in jurisdictions, to evaluate their activities. All these risk factors paved the ground for ML and TF in the Islamic Banks of Bangladesh. However, due to unconventional nature of Banking and lack of investigative reporting on Islamic Banking, this study could not cover the whole picture of the ML/TF of Islamic Banks of Bangladesh. However, both qualitative documents and interviewees confirmed that Islamic Banking in Bangladesh could be branded as risky when it comes to money laundering and terror financing. This study recommends that the central bank authorities who supervise Islamic finance and the government policy makers should obtain a greater understanding of the specific ML/TF risks that may arise in Islamic Banks and develop a proper response. The study findings are expected to considerably impact Islamic banking management and policymakers to develop strong and appropriate policy to enhance transparency, accountability, and efficiency in banking sector. The regulatory bodies can consider the findings to disseminate anti money laundering and terror financing related rules and regulations.

Keywords: money laundering, terror financing, islamic banking, bangladesh

Procedia PDF Downloads 70
644 Green Housing Projects in Egypt: A Futuristic Approach

Authors: Shimaa Mahmoud Ali Ahmed, Boshra Tawfek El-Shreef

Abstract:

Sustainable development has become an important concern worldwide, and climate change has become a global threat. Some of these affect how we approach environmental issues — and how we should approach them. Environmental aspects have an important impact on the built environment, that’s why knowledge about Green Building and Green Construction become a vital dimension of urban sustainable development to face the challenges of climate change. There are several levels of green buildings, from energy-efficient lighting to 100% eco-friendly construction; the concept of green buildings in Egypt is still a rare occurrence, with the concept being relatively new to the market. There are several projects on the ground that currently employing sustainable and green solutions to some extent, some of them achieve a limit of success and others fail to employ the new solutions. The market and the cost as well, are great factors. From the last century, green architecture and environmental sustainability become a famous trend that all the researchers like to follow. Nowadays, the trend towards green has shifted to housing and real estate projects. While the environmental aspects are the key to achieve green buildings, the economic benefits, and the market forces are considered as big challenges. The paper assumes that some appropriate environmental treatments could be added to the applied prototype of the governmental social housing projects in Egypt to achieve better environmental solutions. The aim of the research is to get housing projects in Egypt closer to the track of sustainable and green buildings, through making a local future proposal to be integrated into the current policies. The proposed model is based upon adding some appropriate, cheap environmental modifications to the prototype of the Ministry of Housing, Infrastructure, and New Urban Communities. The research is based on an analytical, comparative analytical, and inductive approach to study and analyze the housing projects in Egypt and the possibilities of integrating green techniques into it.

Keywords: green buildings, urban sustainability, housing projects, sustainable development goals, Egypt 2030

Procedia PDF Downloads 115
643 Hybrid Strategies of Crisis Intervention for Sexualized Violence Using Digital Media

Authors: Katharina Kargel, Frederic Vobbe

Abstract:

Sexualized violence against children and adolescents using digital media poses particular challenges for practitioners with a focus on crisis intervention (social work, psychotherapy, law enforcement). The technical delimitation of violence increases the burden on those affected and increases the complexity of interdisciplinary cooperation. Urgently needed recommendations for practical action do not yet exist in Germany. Funded by the Federal Ministry of Education and Research, these recommendations for action are being developed in the HUMAN project together with science and practice. The presentation introduces the participatory approach of the HUMAN project. We discuss the application-oriented, casuistic approach of the project and present its results using the example of concrete case-based recommendations for Action. The participants will be presented with concrete prototypical case studies from the project, which will be used to illustrate quality criteria for crisis intervention in cases of sexualized violence using digital media. On the basis of case analyses, focus group interviews and interviews with victims of violence, we present the six central challenges of sexualized violence with the use of digital media, namely: • Diffusion (Ambiguities regarding the extent and significance of violence) , • Transcendence (Space and time independence of the dynamics of violence, omnipresence), • omnipresent anxiety (considering diffusion and transcendence), • being haunted (repeated confrontation with digital memories of violence or the perpetrator), • disparity (conflicts of interpretative power between those affected and the social environment) • simultaneity (of all other factors). We point out generalizable principles with which these challenges can be dealt with professionally. Dealing professionally with sexualized violence using digital media requires a stronger networking of professional actors. A clear distinction must be made between their own mission and the mission of the network partners. Those affected by violence must be shown options for crisis intervention in the context of the aid networks. The different competencies and the professional mission of the offers of help are to be made transparent. The necessity of technical possibilities for deleting abuse images beyond criminal prosecution will be discussed. Those affected are stabilized by multimodal strategies such as a combination of rational emotive therapy, legal support and technical assistance.

Keywords: sexualized violence, intervention, digital media, children and youth

Procedia PDF Downloads 212
642 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 304
641 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 529
640 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film

Authors: Nalla Somaiah, Praveen Kumar

Abstract:

Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.

Keywords: Blech structure, electromigration, temperature gradient, thin films

Procedia PDF Downloads 240
639 A Study on Factors Affecting (Building Information Modelling) BIM Implementation in European Renovation Projects

Authors: Fatemeh Daneshvartarigh

Abstract:

New technologies and applications have radically altered construction techniques in recent years. In order to anticipate how the building will act, perform, and appear, these technologies encompass a wide range of visualization, simulation, and analytic tools. These new technologies and applications have a considerable impact on completing construction projects in today's (architecture, engineering and construction)AEC industries. The rate of changes in BIM-related topics is different worldwide, and it depends on many factors, e.g., the national policies of each country. Therefore, there is a need for comprehensive research focused on a specific area with common characteristics. Therefore, one of the necessary measures to increase the use of this new approach is to examine the challenges and obstacles facing it. In this research, based on the Delphi method, at first, the background and related literature are reviewed. Then, using the knowledge obtained from the literature, a primary questionnaire is generated and filled by experts who are selected using snowball sampling. It covered the experts' attitudes towards implementing BIM in renovation projects and their view of the benefits and obstacles in this regard. By analyzing the primary questionnaire, the second group of experts is selected among the participants to be interviewed. The results are analyzed using Theme analysis. Six themes, including Management support, staff resistance, client willingness, Cost of software and implementation, the difficulty of implementation, and other reasons, are obtained. Then a final questionnaire is generated from the themes and filled by the same group of experts. The result is analyzed by the Fuzzy Delphi method, showing the exact ranking of the obtained themes. The final results show that management support, staff resistance, and client willingness are the most critical barrier to BIM usage in renovation projects.

Keywords: building information modeling, BIM, BIM implementation, BIM barriers, BIM in renovation

Procedia PDF Downloads 147
638 Narrative Family Therapy and the Treatment of Perinatal Mood and Anxiety Disorders

Authors: Jamie E. Banker

Abstract:

For many families, pregnancy and the postpartum time are filled with both anticipation and change. For some pregnant or postpartum women, this time is marked by the onset of a mood or anxiety disorder. Experiencing a mood or anxiety disorders during this time of life differs from depression or anxiety at other times of life. Not only because of the physical changes occurring in the mother’s body but also the mental and physical preparation necessary to redefine family roles, responsibilities, and develop new identities in the life transition. The presence of a mood or anxiety disorder can influence the way in which a mother defines herself and can complicate her understanding of her abilities and competencies as a mother. The complexity of experiencing a mood or anxiety disorder in the midst of these changes necessitates specific treatment interventions to match both the symptomatology and psychological adjustments. This study explores the use of narrative family therapy techniques when treating a mother who is experiencing postpartum depression. Externalization is a common technique used in narrative family therapy and can help client’s separate their identity from the problems they are experiencing. This is crucial to a new mom who is in the middle of defining her identity during her transition to parenthood. The goal of this study is to examine how the use of externalization techniques help postpartum women separate their mood and anxiety symptoms from their identity as a mother. An exploratory case study design was conducted in a single setting, private practice therapy office, and explored how a narrative family therapy approach can be used to treat perinatal mood and anxiety disorders. The therapy sessions were audio recorded and transcribed. Constructivism and narrative theory are used as theoretical frameworks and data from the therapy sessions, and a follow-up survey was triangulated and analyzed. During the course of the treatment, the participant reports using the new externalizing labels for her symptoms. Within one month of treatment, the participant reports that she could stop herself from thinking the harmful thoughts faster, and within three months, the harmful thoughts went away. The main themes in this study were building courage and less self-blame. This case highlights the role narrative family therapy can play in the treatment of perinatal mood and anxiety disorders and the importance of separating a women’s mood from her identity as a mother. This conceptual framework was beneficial to the postpartum mother when treating perinatal mood and anxiety disorder symptoms.

Keywords: externalizing techniques, narrative family therapy, perinatal mood and anxiety disorders, postpartum depression

Procedia PDF Downloads 246
637 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 22
636 How Vernacular Attributes of Traditional Buildings Can Be Integrated Into Modern Designs - A Case Study of Thirumayilai, Mylapore

Authors: Divya Ramaseshan

Abstract:

The indigenous beauty of a space supported by its local context is unmatchable. India, known to be a hub for varied cultural significance, has one of the best uses of vernacularism. This paper focuses on the traditional houses present in Thirumayilai, Mylapore, one of the oldest and most populous cities in Chennai. The Mylapore houses are known for their Agraharam style with thinnai, courtyard, and sloping roof characteristics. These homes had a combined influence of Indian, Islamic as well as Neo-classical architecture in their design. The design of the houses reflects the lives of Brahmin communities which have almost vanished from sight now. According to the growing demands of local residents as well as urbanization, many houses have been renovated. Some of those structures have been conserved in certain streets showcasing their historical identity. Other structures have either been demolished or redesigned based on people’s needs. Those structures have been identified and studied to understand the comparative features that have been changed. Many of those were in direct relevance to the city’s climate, family size, socializing habits, and local materials. Being a temple town, Mylapore has contour variations sloping towards various water bodies. These factors have been considered for building homes as well. The study aims to list down the possible design guidelines that could be effective in today’s construction field. The pros and cons are analyzed, and the respective methodologies are framed. Our modern construction technologies have brought in the best visual aesthetics in a short frame of time, but the serene touch of teak wood, walking through paved stones, daydreaming in the sunlit courtyards, and chitchatting in porticos are always cherished. Architects around the world are trying hard to achieve such appreciated design elements in upcoming projects with the best use of modern technology. This will also improvise people’s mental health in the comfort of their homes.

Keywords: Agraharam, Mylapore, traditional, vernacularism

Procedia PDF Downloads 83
635 Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles

Authors: Salma E. Ahmed

Abstract:

Since the mid 50’s, enormous attention has been paid towards nanocarriers and their applications in drug and gene delivery. Among these vesicles, liposomes and micelles have been heavily investigated due to their many advantages over other types. Liposomes, for instance, are mostly distinguished by their ability to encapsulate hydrophobic, hydrophilic and amphiphilic drugs. Micelles, on the other hand, are self-assembled shells of lipids, amphiphilic or oppositely charged block copolymers that, once exposed to aqueous media, can entrap hydrophobic agents, and possess prolonged circulation in the bloodstream. Both carriers are considered compatible and biodegradable. Nevertheless, they have limited stabilities, chemical versatilities, and drug encapsulation efficiencies. In order to overcome these downsides, strategies for optimizing a novel drug delivery system that has the architecture of liposomes and polymeric characteristics of micelles have been evolved. Polymersomes are vehicles with fluidic cores and hydrophobic shells that are protected and isolated from the aqueous media by the hydrated hydrophilic brushes which give the carrier its distinctive polymeric bilayer shape. Similar to liposomes, this merit enables the carrier to encapsulate a wide range of agents, despite their affinities and solubilities in water. Adding to this, the high molecular weight of the amphiphiles that build the body of the polymersomes increases their colloidal and chemical stabilities and reduces the permeability of the polymeric membranes, which makes the vesicles more protective to the encapsulated drug. These carriers can also be modified in ways that make them responsive when targeted or triggered, by manipulating their composition and attaching moieties and conjugates to the body of the carriers. These appealing characteristics, in addition to the ease of synthesis, gave the polymersomes greater potentials in the area of drug delivery. Thus, their design and characterization, in comparison with liposomes and micelles, are briefly reviewed in this work.

Keywords: controlled release, liposomes, micelles, polymersomes, targeting

Procedia PDF Downloads 181
634 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 112
633 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller

Authors: Feleke Tsegaye

Abstract:

The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.

Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path

Procedia PDF Downloads 36
632 Building Information Management Advantages, Adaptation, and Challenges of Implementation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino

Abstract:

Building Information Management (BIM) at recent years has widespread consideration on the Architecture, Engineering and Construction (AEC). BIM has been bringing innovation in AEC industry and has the ability to improve the construction industry with high quality, reduction time and budget of project. Meanwhile, BIM support model and process in AEC industry, the process include the project time cycle, estimating, delivery and generally the way of management of project but not limited to those. This research carried the BIM advantages, adaptation and challenges of implementation in Kabul region. Capital Region Independence Development Authority (CRIDA) have responsibilities to implement the development projects in Kabul region. The method of study were considers on advantages and reasons of BIM performance in Afghanistan based on online survey and data. Besides that, five projects were studied, the reason of consideration were many times design revises and changes. Although, most of the projects had problems regard to designing and implementation stage, hence in canal project was discussed in detail with the main reason of problems. Which were many time changes and revises due to the lack of information, planning, and management. In addition, two projects based on BIM utilization in Japan were also discussed. The Shinsuizenji Station and Oita River dam projects. Those are implemented and implementing consequently according to the BIM requirements. The investigation focused on BIM usage, project implementation process. Eventually, the projects were the comparison with CRIDA and BIM utilization in Japan. The comparison will focus on the using of the model and the way of solving the problems based upon on the BIM. In conclusion, that BIM had the capacity to prevent many times design changes and revises. On behalf of achieving those objectives are required to focus on data management and sharing, BIM training and using new technology.

Keywords: construction information management, implementation and adaptation of BIM, project management, developing countries

Procedia PDF Downloads 106
631 Insights into Insect Vectors: Liberibacter Interactions

Authors: Murad Ghanim

Abstract:

The citrus greening disease, also known as Huanglongbing, caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) has resulted in tremendous losses and the death of millions of citrus trees worldwide. CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The closely-related bacterium Candidatus Liberibacter solanacearum (CLso), which is associated with vegetative disorders in carrots and the zebra chips disease in potatoes, is transmitted by other psyllid species including Bactericera trigonica in carrots and B. ckockerelli in potatoes. Chemical sprays are currently the prevailing method for managing these diseases for limiting psyllid populations; however, they are limited in their effectiveness. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is very limited. CLas induces changes in the nuclear architecture in the midgut of ACP and activates programmed cell death (apoptosis) in this organ. Strikingly, CLso displayed an opposite effect in the gut of B. trigonica, showing limited apoptosis, but widespread necrosis. Electron and fluorescent microscopy further showed that CLas induced the formation of Endoplasmic reticulum (ER) inclusion- and replication-like bodies, in which it increases and multiplies. ER involvement in bacterial replication is hypothesized to be the first stage of an immune response leading to the apoptotic and necrotic responses. ER exploitation and the subsequent events that lead to these cellular and stress responses might activate a cascade of molecular responses ending up with apoptosis and necrosis. Understanding the molecular interactions that underlay the necrotic/apoptotic responses to the bacteria will increase our knowledge of ACP-CLas, and BT-CLso interactions, and will set the foundation for developing novel, and efficient strategies to disturb these interactions and inhibit the transmission.

Keywords: Liberibacter, psyllid, transmission, apoptosis, necrosis

Procedia PDF Downloads 133
630 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 97
629 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 46
628 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 244
627 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 225
626 Heritage and the Sustainable Development Goals: Successful Practices and Lessons Learnt from the Uk’s Global Challenges Research Fund and Newton Research Portfolios

Authors: Francesca Giliberto

Abstract:

Heritage and culture, in general, plays a central role in addressing the complexity and broad variety of global development challenges, ranging from environmental degradation and refugee and humanitarian crisis to extreme poverty, food insecurity, persisting inequalities, and unsustainable urbanisation, just to mention some examples. Nevertheless, the potential of harnessing heritage to address global challenges has remained largely under-represented and underestimated in the most recent international development agenda adopted by the United Nations in 2015 (2030 Agenda). Among the 17 sustainable development goals (SDGs) and 169 associated targets established, only target 11.4 explicitly mentions heritage, stating that efforts should be strengthened “to protect and safeguard the world’s cultural and natural heritage in order to make our cities safe, resilient, and sustainable”. However, this global target continues to reflect a rather limited approach to heritage for development. This paper will provide a critical reflection on the contribution that using (tangible and intangible) heritage in international research can make to tackling global challenges and supporting the achievement of all the SDGs. It will present key findings and insights from the heritage strand of PRAXIS, a research project from the University of Leeds, which focuses on Arts and Humanities research across 300+ projects funded through the Global Challenges Research Fund and Newton Fund. In particular, this paper will shed light on successful practices and lessons learned from 87 research projects funded through the Global Challenges Research Fund and Newton Fund portfolios in 49 countries eligible for Official Development Assistance (ODA) between 2014 and 2021. Research data were collected through a desk assessment of project data available on UKRI Gateway to Research, online surveys, and qualitative interviews with research principal investigators and partners. The findings of this research provide evidence of how heritage and heritage research can foster innovative, interdisciplinary, inclusive, and transformative sustainable development and the achievement of the SDGs in ODA countries and beyond. This paper also highlights current challenges and research gaps that still need to be overcome to rethink current approaches and transform our development models to be more integrated, human-centred, and sustainable.

Keywords: global challenges, heritage, international research, sustainable development

Procedia PDF Downloads 56