Search results for: real-time data acquisition and reporting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26079

Search results for: real-time data acquisition and reporting

23529 Selection Criteria in the Spanish Secondary Education Content and Language Integrated Learning (CLIL) Programmes and Their Effect on Code-Switching in CLIL Methodology

Authors: Dembele Dembele, Philippe

Abstract:

Several Second Language Acquisition (SLA) studies have stressed the benefits of Content and Language Integrated Learning (CLIL) and shown how CLIL students outperformed their non-CLIL counterparts in many L2 skills. However, numerous experimental CLIL programs seem to have mainly targeted above-average and rather highly motivated language learners. The need to understand the impact of the student’s language proficiency on code-switching in CLIL instruction motivated this study. Therefore, determining the implications of the students’ low-language proficiency for CLIL methodology, as well as the frequency with which CLIL teachers use the main pedagogical functions of code-switching, seemed crucial for a Spanish CLIL instruction on a large scale. In the mixed-method approach adopted, ten face-to-face interviews were conducted in nine Valencian public secondary education schools, while over 30 CLIL teachers also contributed with their experience in two online survey questionnaires. The results showed the crucial role language proficiency plays in the Valencian CLIL/Plurilingual selection criteria. The presence of a substantial number of low-language proficient students in CLIL groups, which in turn implied important methodological consequences, was another finding of the study. Indeed, though the pedagogical use of L1 was confirmed as an extended practice among CLIL teachers, more than half of the participants perceived that code-switching impaired attaining their CLIL lesson objectives. Therein, the dissertation highlights the need for more extensive empirical research on how code-switching could prove beneficial in CLIL instruction involving low-language proficient students while maintaining the maximum possible exposure to the target language.

Keywords: CLIL methodology, low language proficiency, code switching, selection criteria, code-switching functions

Procedia PDF Downloads 81
23528 Multilevel Gray Scale Image Encryption through 2D Cellular Automata

Authors: Rupali Bhardwaj

Abstract:

Cryptography is the science of using mathematics to encrypt and decrypt data; the data are converted into some other gibberish form, and then the encrypted data are transmitted. The primary purpose of this paper is to provide two levels of security through a two-step process, rather than transmitted the message bits directly, first encrypted it using 2D cellular automata and then scrambled with Arnold Cat Map transformation; it provides an additional layer of protection and reduces the chance of the transmitted message being detected. A comparative analysis on effectiveness of scrambling technique is provided by scrambling degree measurement parameters i.e. Gray Difference Degree (GDD) and Correlation Coefficient.

Keywords: scrambling, cellular automata, Arnold cat map, game of life, gray difference degree, correlation coefficient

Procedia PDF Downloads 377
23527 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks

Authors: Naveed Ghani, Samreen Javed

Abstract:

In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.

Keywords: network worms, malware infection propagating malicious code, virus, security, VPN

Procedia PDF Downloads 358
23526 Interactive IoT-Blockchain System for Big Data Processing

Authors: Abdallah Al-ZoubI, Mamoun Dmour

Abstract:

The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.

Keywords: IoT devices, blockchain, Ethereum, big data

Procedia PDF Downloads 150
23525 Keynote Talk: The Role of Internet of Things in the Smart Cities Power System

Authors: Abdul-Rahman Al-Ali

Abstract:

As the number of mobile devices is growing exponentially, it is estimated to connect about 50 million devices to the Internet by the year 2020. At the end of this decade, it is expected that an average of eight connected devices per person worldwide. The 50 billion devices are not mobile phones and data browsing gadgets only, but machine-to-machine and man-to-machine devices. With such growing numbers of devices the Internet of Things (I.o.T) concept is one of the emerging technologies as of recently. Within the smart grid technologies, smart home appliances, Intelligent Electronic Devices (IED) and Distributed Energy Resources (DER) are major I.o.T objects that can be addressable using the IPV6. These objects are called the smart grid internet of things (SG-I.o.T). The SG-I.o.T generates big data that requires high-speed computing infrastructure, widespread computer networks, big data storage, software, and platforms services. A company’s utility control and data centers cannot handle such a large number of devices, high-speed processing, and massive data storage. Building large data center’s infrastructure takes a long time, it also requires widespread communication networks and huge capital investment. To maintain and upgrade control and data centers’ infrastructure and communication networks as well as updating and renewing software licenses which collectively, requires additional cost. This can be overcome by utilizing the emerging computing paradigms such as cloud computing. This can be used as a smart grid enabler to replace the legacy of utilities data centers. The talk will highlight the role of I.o.T, cloud computing services and their development models within the smart grid technologies.

Keywords: intelligent electronic devices (IED), distributed energy resources (DER), internet, smart home appliances

Procedia PDF Downloads 324
23524 Statistical Analysis of Interferon-γ for the Effectiveness of an Anti-Tuberculous Treatment

Authors: Shishen Xie, Yingda L. Xie

Abstract:

Tuberculosis (TB) is a potentially serious infectious disease that remains a health concern. The Interferon Gamma Release Assay (IGRA) is a blood test to find out if an individual is tuberculous positive or negative. This study applies statistical analysis to the clinical data of interferon-gamma levels of seventy-three subjects who diagnosed pulmonary TB in an anti-tuberculous treatment. Data analysis is performed to determine if there is a significant decline in interferon-gamma levels for the subjects during a period of six months, and to infer if the anti-tuberculous treatment is effective.

Keywords: data analysis, interferon gamma release assay, statistical methods, tuberculosis infection

Procedia PDF Downloads 306
23523 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
23522 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media

Authors: Jinghui Peng, Shanyu Tang, Jia Li

Abstract:

Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.

Keywords: steganalysis, security, Fast Fourier Transform, streaming media

Procedia PDF Downloads 147
23521 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion

Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam

Abstract:

Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.

Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites

Procedia PDF Downloads 321
23520 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 455
23519 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
23518 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 70
23517 The Use of Bimodal Subtitles on Netflix English Movies in Enhancing Vocabulary

Authors: John Lloyd Angolluan, Jennile Caday, Crystal Mae Estrella, Reike Alliyah Taladua, Zion Michael Ysulat

Abstract:

One of the requirements of having the ability to communicate in English is by having adequate vocabulary. Nowadays, people are more engaged in watching movie streams on which they can watch movies in a very portable way, such as Netflix. Wherein Netflix became global demand for online media has taken off in recent years. This research aims to know whether the use of bimodal subtitles on Netflix English movies can enhance vocabulary. This study is quantitative and utilizes a descriptive method, and this study aims to explore the use of bimodal subtitles on Netflix English movies to enhance the vocabulary of students. The respondents of the study were the selected Second-year English majors of Rizal Technological University Pasig and Boni Campus using the purposive sampling technique. The researcher conducted a survey questionnaire through the use of Google Forms. In this study, the weighted mean was used to evaluate the student's responses to the statement of the problems of the study of the use of bimodal subtitles on Netflix English movies. The findings of this study revealed that the bimodal subtitle on Netflix English movies enhanced students’ vocabulary learning acquisition by providing learners with access to large amounts of real and comprehensible language input, whether accidentally or intentionally, and it turns out that bimodal subtitles on Netflix English movies help students recognize vocabulary, which has a positive impact on their vocabulary building. Therefore, the researchers advocate that watching English Netflix movies enhances students' vocabulary by using bimodal subtitled movie material during their language learning process, which may increase their motivation and the usage of bimodal subtitles in learning new vocabulary. Bimodal subtitles need to be incorporated into educational film activities to provide students with a vast amount of input to expand their vocabulary.

Keywords: bimodal subtitles, Netflix, English movies, vocabulary, subtitle, language, media

Procedia PDF Downloads 85
23516 Value Chain Based New Business Opportunity

Authors: Seonjae Lee, Sungjoo Lee

Abstract:

Excavation is necessary to remain competitive in the current business environment. The company survived the rapidly changing industry conditions by adapting new business strategy and reducing technology challenges. Traditionally, the two methods are conducted excavations for new businesses. The first method is, qualitative analysis of expert opinion, which is gathered through opportunities and secondly, new technologies are discovered through quantitative data analysis of method patents. The second method increases time and cost. Patent data is restricted for use and the purpose of discovering business opportunities. This study presents the company's characteristics (sector, size, etc.), of new business opportunities in customized form by reviewing the value chain perspective and to contributing to creating new business opportunities in the proposed model. It utilizes the trademark database of the Korean Intellectual Property Office (KIPO) and proprietary company information database of the Korea Enterprise Data (KED). This data is key to discovering new business opportunities with analysis of competitors and advanced business trademarks (Module 1) and trading analysis of competitors found in the KED (Module 2).

Keywords: value chain, trademark, trading analysis, new business opportunity

Procedia PDF Downloads 372
23515 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries

Authors: Mousouris Spiridon, Kavakli Evangelia

Abstract:

This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.

Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM

Procedia PDF Downloads 109
23514 An Evaluation of the Impact of E-Banking on Operational Efficiency of Banks in Nigeria

Authors: Ibrahim Rabiu Darazo

Abstract:

The research has been conducted on the impact of E-banking on the operational efficiency of Banks in Nigeria, A case of some selected banks (Diamond Bank Plc, GTBankPlc, and Fidelity Bank Plc) in Nigeria. The research is a quantitative research which uses both primary and secondary sources of data collection. Questionnaire were used to obtained accurate data, where 150 Questionnaire were distributed among staff and customers of the three Banks , and the data collected where analysed using chi-square, whereas the secondary data where obtained from relevant text books, journals and relevant web sites. It is clear from the findings that, the use of e-banking by the banks has improved the efficiency of these banks, in terms of providing efficient services to customers electronically, using Internet Banking, Telephone Banking ATMs, reducing time taking to serve customers, e-banking allow new customers to open an account online, customers have access to their account at all the time 24/7.E-banking provide access to customers information from the data base and cost of check and postage were eliminated using e-banking. The recommendation at the end of the research include; the Banks should try to update their electronic gadgets, e-fraud(internal & external) should also be controlled, Banks shall employ qualified man power, Biometric ATMs shall be introduce to reduce fraud using ATM Cards, as it is use in other countries like USA.

Keywords: banks, electronic banking, operational efficiency of banks, biometric ATMs

Procedia PDF Downloads 333
23513 From Name-Calling to Insidious Rhetoric: Construction and Evolution of the Transgender Imagery in News Discourse, 1953-2016

Authors: Hsiao-Yung Wang

Abstract:

This essay aims to examine how the transgender imagery has been constructed in the Taiwanese news media and its evolution from 1953 to 2016. It also explores the discourse patterns and rhetorical strategies in the transgender-related issues which contributed to levels of evaluation in forming ‘social deviance.’ Samples for analysis were selected from mainstream newspapers, including China Times, United Daily and Apple Daily. The time frame for sample selection is from August 1953 (when the first transgender case was reported in Taiwan) to June 2016. To enhance understanding of media representation as nominalistic-based, the author refers to the representative of critical rhetoric Raymie McKerrow for his study on remembrance and forgetfulness in public discourse (especially in his model of ‘critique of domination’); thereby categorizing the 64 years of transgender discourse into five periods: (1) transgender as ‘intersex’ of surgical-reparative medical treatment; (2) transgender as ‘freak gender-bender’ with criminal behaviors; (3) transgender as ‘ladyboy’ (‘katoey in a Thai term) of bar girls or sex workers; (4) transgender as ‘cross dresser’ of transvestite performance; and (5) transgender as ‘life-style or human right’ of spontaneous gender identification. Based on the research findings, this essay argues that the characterization of transgender reporting as a site for the production of compulsory sexism and gender stereotype by the specific forms of name-calling. Besides, the evolution of word-image addressing to transgender issues also pinpoints media as a reflection of fashion of the day. While the transgender imagery might be crystallized as ‘still social problems’ or ‘gender transgression’ in insidious rhetoric; and while the so-called ‘phobia’ persistently embodies in media discourse to exercise name-calling in an ambiguous (rather than in a bullying) way or under the cover of humanist-liberalist rationales, these emergent rhetorical dilemma should be resolved without any delay.

Keywords: critical rhetoric, media representation, McKerrow, nominalistic, social deviance, transgender

Procedia PDF Downloads 312
23512 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 196
23511 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 130
23510 Digitizing Masterpieces in Italian Museums: Techniques, Challenges and Consequences from Giotto to Caravaggio

Authors: Ginevra Addis

Abstract:

The possibility of reproducing physical artifacts in a digital format is one of the opportunities offered by the technological advancements in information and communication most frequently promoted by museums. Indeed, the study and conservation of our cultural heritage have seen significant advancement due to the three-dimensional acquisition and modeling technology. A variety of laser scanning systems has been developed, based either on optical triangulation or on time-of-flight measurement, capable of producing digital 3D images of complex structures with high resolution and accuracy. It is necessary, however, to explore the challenges and opportunities that this practice brings within museums. The purpose of this paper is to understand what change is introduced by digital techniques in those museums that are hosting digital masterpieces. The methodology used will investigate three distinguished Italian exhibitions, related to the territory of Milan, trying to analyze the following issues about museum practices: 1) how digitizing art masterpieces increases the number of visitors; 2) what the need that calls for the digitization of artworks; 3) which techniques are most used; 4) what the setting is; 5) the consequences of a non-publication of hard copies of catalogues; 6) envision of these practices in the future. Findings will show how interconnection plays an important role in rebuilding a collection spread all over the world. Secondly how digital artwork duplication and extension of reality entail new forms of accessibility. Thirdly, that collection and preservation through digitization of images have both a social and educational mission. Fourthly, that convergence of the properties of different media (such as web, radio) is key to encourage people to get actively involved in digital exhibitions. The present analysis will suggest further research that should create museum models and interaction spaces that act as catalysts for innovation.

Keywords: digital masterpieces, education, interconnection, Italian museums, preservation

Procedia PDF Downloads 175
23509 Antibiotic Prophylaxis Habits in Oral Implant Surgery in the Netherlands: A Cross-Sectional Survey

Authors: Fabio Rodriguez Sanchez, Josef Bruers, Iciar Arteagoitia, Carlos Rodriguez Andres

Abstract:

Background: Oral implants are a routine treatment to replace lost teeth. Although they have a high rate of success, implant failures do occur. Perioperative antibiotics have been suggested to prevent postoperative infections and dental implant failures, but they remain a controversial treatment among healthy patients. The objective of this study was to determine whether antibiotic prophylaxis is a common treatment in the Netherlands among general dentists, maxillofacial-surgeons, periodontists and implantologists in conjunction with oral implant surgery among healthy patients and to assess the nature of antibiotics prescriptions in order to evaluate whether any consensus has been reached and the current recommendations are being followed. Methodology: Observational cross-sectional study based on a web-survey reported according to the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines. A validated questionnaire, developed by Deeb et al. (2015), was translated and slightly adjusted to circumstances in the Netherlands. It was used with the explicit permission of the authors. This questionnaire contained both close-ended and some open-ended questions in relation to the following topics: demographics, qualification, antibiotic type, prescription-duration and dosage. An email was sent February 2018 to a sample of 600 general dentists and all 302 oral implantologists, periodontists and maxillofacial surgeons who were recognized by the Dutch Association of Oral Implantology (NVOI) as oral health care providers placing oral implants. The email included a brief introduction about the study objectives and a link to the web questionnaire, which could be filled in anonymously. Overall, 902 questionnaires were sent. However, 29 questionnaires were not correctly received due to an incorrect email address. So a total number of 873 professionals were reached. Collected data were analyzed using SPSS (IBM Corp., released 2012, Armonk, NY). Results: The questionnaire was sent back by a total number of 218 participants (response rate=24.2%), 45 female (20.8%) and 171 male (79.2%). Two respondents were excluded from the study group because they were not currently working as oral health providers. Overall 151 (69.9%) placed oral implants on regular basis. Approximately 79 (52.7%) of these participants prescribed antibiotics only in determined situations, 66 (44.0%) prescribed antibiotics always and 5 dentists (3.3%) did not prescribe antibiotics at all when placing oral implants. Overall, 83 participants who prescribed antibiotics, did so both pre- and postoperatively (58.5%), 12 exclusively postoperative (8.5%), and 47 followed an exclusive preoperative regime (33.1%). A single dose of 2,000 mg amoxicillin orally 1-hour prior treatment was the most prescribed preoperative regimen. The most frequent prescribed postoperative regimen was 500 mg amoxicillin three times daily for 7 days after surgery. On average, oral health professionals prescribed 6,923 mg antibiotics in conjunction with oral implant surgery, varying from 500 to 14,600 mg. Conclusions: Antibiotic prophylaxis in conjunction with oral implant surgery is prescribed in the Netherlands on a rather large scale. Dutch professionals might prescribe antibiotics more cautiously than in other countries and there seems to be a lower range on the different antibiotic types and regimens being prescribed. Anyway, recommendations based on last-published evidence are frequently not being followed.

Keywords: clinical decision making, infection control, antibiotic prophylaxis, dental implants

Procedia PDF Downloads 141
23508 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
23507 Current Trends in the Arabic Linguistics Development: Between National Tradition and Global Tendencies

Authors: Olga Bernikova, Oleg Redkin

Abstract:

Globalization is a process of worldwide economic, political and cultural integration. Obviously, this phenomenon has both positive and negative issues. This article analyzes the impact of the modern process of globalization on the national traditions of language teaching and research. In this context, the problem of the ratio of local to global can be viewed from several sides. Firstly, since English is the language of over 80 percent of scientific and technical research worldwide, what should be the language of science in certain region? Secondly, language 'globality' is not always associated with English, because intercultural communications may have their regional peculiarities. For example, in the Arab world, Modern Standard Arabic can also be regarded as 'global' phenomenon, since the mother-tongue languages of the population are local Arabic dialects. In addition, the correlation 'local' versus 'global' is manifested not only in the linguistic sphere but also in the methodology used in language acquisition and research. Thus, the major principles of the Arabic philological tradition, which goes back to the 7th century, are still spread in the modern Arab world. At the same time, the terminology and methods of language research that are peculiar to this tradition are quite far from the issues of general linguistics that underlies the description of all the languages of the world. The present research relies on a comparative analysis of sources in Arabic linguistics, including original works in Arabic dating back to the 12th-13th centuries. As a case study, interaction of local and global is also considered on the example of the Arabic teaching and research in Russia. Speaking about the correlation between local and global it is possible to forecast development of two parallel tendencies: the spread of the phenomena of globalization on one hand, and local implementation of a language policy aimed at preserving native languages, including Arabic, on the other.

Keywords: Arabic, global, language, local, tradition

Procedia PDF Downloads 260
23506 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery

Authors: Jan-Peter Mund, Christian Kind

Abstract:

In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.

Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data

Procedia PDF Downloads 89
23505 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 297
23504 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago

Authors: Tyler Gill, Sophia Daniels

Abstract:

The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.

Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis

Procedia PDF Downloads 244
23503 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 138
23502 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey

Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff

Abstract:

This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.

Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction

Procedia PDF Downloads 168
23501 Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment

Authors: Cinzia Carrodano, Dimitri Konstantas

Abstract:

Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations.

Keywords: continuous data, dynamic risk, holistic risk assessment, risk concept

Procedia PDF Downloads 127
23500 Overall Assessment of Human Research and Ethics Committees in the United Arab Emirates

Authors: Mahera Abdulrahman, Satish Chandrasekhar Nair

Abstract:

Growing demand for human health research in the United Arab Emirates (UAE) has prompted the need to develop a robust research ethics oversight, particularly given the large unskilled-worker immigrant population and the elderly citizens utilizing health services. Examination of the structure, function, practices and outcomes of the human research ethics committees (HREC) was conducted using two survey instruments, reliable and validated. Results indicate that in the absence of a national ethics regulatory body, the individual emirate’s governed 21 HRECs covering health facilities and academic institutions in the UAE. Among the HRECs, 86% followed International Council for Harmonization-Good Clinical Practice guidelines, 57% have been in operation for more than five years, 81% reviewed proposals within eight weeks, 48% reviewed for clinical and scientific merit apart from ethics, and 43% handled more than 50 research proposals per year. However, researcher recognition, funding transparency, adverse event reporting systems were widespread in less than one-third of all HRECs. Surprisingly, intellectual property right was not included as a research output. Research was incorporated into the vision and mission statements of many (62%) organizations and, mechanisms such as research publications, collaborations, and recognitions were employed as key performance indicators to measure research output. In spite, resources to generate research output such as dedicated budget (19%), support staff (19%) and continuous training and mentoring program for medical residents and HREC members were somehow lacking. HREC structure and operations in the UAE are similar to other regions of the world, resources allocation for efficient, quality monitoring, continuous training, and the creation of a clinical research network are needed to strengthen the clinical research enterprise to scale up for the future. It is anticipated that the results of this study will benefit investigators, regulators, pharmaceutical sponsors and the policy makers in the region.

Keywords: institutional review board, ethics committee, human research ethics, United Arab Emirates (UAE)

Procedia PDF Downloads 224